मराठी

Evaluate the Following Integrals: ∫ E 2 X ( 1 − Sin 2 X 1 − Cos 2 X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]
बेरीज

उत्तर

\[\text{ We have,} \]

\[I = \int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

\[ = \int e^{2x} \left( \frac{1 - 2 sinx \cos x}{2 \sin^2 x} \right)dx\]

\[\text{ Put  t }= 2x . \text{ Then dt} = 2dx\]

\[\text{ Therefore }, \]

\[I = \frac{1}{2}\int e^t \left( \frac{1 - 2 \sin\frac{t}{2} \cos\frac{t}{2}}{2 \sin^2 \frac{t}{2}} \right)dt\]

\[ = \frac{1}{4}\int e^t \left( \frac{1 - 2 \sin\frac{t}{2} \cos\frac{t}{2}}{\sin^2 \frac{t}{2}} \right)dt\]

\[ = \frac{1}{4}\int e^t \left( \frac{1}{\sin^2 \frac{t}{2}} - \frac{2 \sin\frac{t}{2}\cos\frac{t}{2}}{\sin^2 \frac{t}{2}} \right)dt\]

\[ = \frac{1}{4}\int e^t \left( {cosec}^2 \frac{t}{2} - 2\cot\frac{t}{2} \right)dt\]

\[ = - \frac{1}{4}\int e^t \left( 2\cot\frac{t}{2} - {cosec}^2 \frac{t}{2} \right)dt\]

\[\text{ Consider, }f\left( x \right) = 2\cot\frac{t}{2}, \text{ then f}^ \left( x \right) = - {cosec}^2 \frac{t}{2}\]

\[ \text{Thus, the given integrand is of the form} \text{ e}^x \left[ f   \left( x \right) + f^{ '} \left( x \right) \right] . \]

\[\text{ Therefore, I }= - \frac{1}{4}\left( 2\cot\frac{t}{2} \right) e^t + c\]

\[ = - \frac{1}{4}\left( 2\cot\frac{2x}{2} \right) e^{2x} + c\]

\[\text{ Hence, }\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx = - \frac{1}{2}\left( \cot x \right) e^{2x} + c\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.26 [पृष्ठ १४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.26 | Q 24 | पृष्ठ १४३

संबंधित प्रश्‍न

Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{1}{x \log x} dx\]

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


\[\int e^{2x} \text{ sin x cos x dx }\]

Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

Evaluate the following integral:

\[\int\frac{1}{x\left( x^3 + 8 \right)}dx\]

 


\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]

Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


Evaluate the following integral:

\[\int\frac{x^2}{x^4 + x^2 - 2}dx\]

\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]

Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×