मराठी

∫ 1 5 − 4 Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int \frac{1}{5 - 4 \cos x}dx\]
\[\text{ Putting  cos x} = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \]
\[ \Rightarrow I = \int \frac{1}{5 - 4 \left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)}dx\]
\[ = \int \frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{5 \left( 1 + \tan^2 \frac{x}{2} \right) - 4 + 4 \tan^2 \frac{x}{2}}dx\]
\[ = \int \frac{\text{ sec}^2 \left( \frac{x}{2} \right)}{9 \tan^2 \frac{x}{2} + 1}dx\]
\[\text{ Let tan }\left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \left( \frac{x}{2} \right)dx = dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right)dx = 2dt\]
\[ \therefore I = 2\int\frac{dt}{9 t^2 + 1}\]
\[ = \frac{2}{9}\int\frac{dt}{t^2 + \frac{1}{9}}\]
\[ = \frac{2}{9}\int \frac{dt}{t^2 + \left( \frac{1}{3} \right)^2}\]
\[ = \frac{2}{9} \times 3 \tan^{- 1} \left( \frac{t}{\frac{1}{3}} \right) + C\]
\[ = \frac{2}{3} \tan^{- 1} \left( 3t \right) + C\]
\[ = \frac{2}{3} \tan^{- 1} \left( 3 \tan \frac{x}{2} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.23 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.23 | Q 10 | पृष्ठ ११७

संबंधित प्रश्‍न

Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{1}{x \log x} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

Write a value of

\[\int\frac{\left( \log x \right)^n}{x} \text{ dx }\]

Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate:  \[\int 2^x  \text{ dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]

Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×