Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int \frac{1}{5 - 4 \cos x}dx\]
\[\text{ Putting cos x} = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \]
\[ \Rightarrow I = \int \frac{1}{5 - 4 \left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)}dx\]
\[ = \int \frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{5 \left( 1 + \tan^2 \frac{x}{2} \right) - 4 + 4 \tan^2 \frac{x}{2}}dx\]
\[ = \int \frac{\text{ sec}^2 \left( \frac{x}{2} \right)}{9 \tan^2 \frac{x}{2} + 1}dx\]
\[\text{ Let tan }\left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \left( \frac{x}{2} \right)dx = dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right)dx = 2dt\]
\[ \therefore I = 2\int\frac{dt}{9 t^2 + 1}\]
\[ = \frac{2}{9}\int\frac{dt}{t^2 + \frac{1}{9}}\]
\[ = \frac{2}{9}\int \frac{dt}{t^2 + \left( \frac{1}{3} \right)^2}\]
\[ = \frac{2}{9} \times 3 \tan^{- 1} \left( \frac{t}{\frac{1}{3}} \right) + C\]
\[ = \frac{2}{3} \tan^{- 1} \left( 3t \right) + C\]
\[ = \frac{2}{3} \tan^{- 1} \left( 3 \tan \frac{x}{2} \right) + C\]
APPEARS IN
संबंधित प्रश्न
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
` ∫ cot^3 x "cosec"^2 x dx `
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integrals:
Write a value of
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate:
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)