मराठी

Evaluate the following: ad∫2ax-x2 dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`

बेरीज

उत्तर

Let I = `int sqrt(2"a"x - x^2)  "d"x`

= `int sqrt(-(x^2 - 2"a"x))  "d"x`

= `int sqrt(-(x^2 - 2"a"x + "a"^2 - "a"^2))  "d"x`

= `int sqrt(-[(x - "a")^2 - "a"^2])  "d"x`

= `int sqrt("a"^2 - (x - "a")^2)  "d"x`

= `(x - "a")/2 sqrt("a"^2 - x^2) + "a"^2/2  sin^-1  ((x - "a")/"a") + "C"`  ......`[because int sqrt("a"^2 - x^2) "d"x = x/2sqrt("a"^2 - x^2) - "a"^2/2  sin^-1  x/"a" + "C"]`

= `(x - "a")/2 sqrt("a"^2 - (x^2 - 2"a"x + "a"^2)) + "a"^2/2  sin^-1  ((x - "a")/"a") + "C"`

= `(x - "a")/2 sqrt(2"a"x - x^2) + "a"^2/2 sin^-1  9(x - "a"0/"a") + "C"`

Hence, I = `(x - "a")/2 sqrt(2"a"x - x^2) + "a"^2/2 sin^-1  ((x - "a")/"a") + "C"`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 20 | पृष्ठ १६४

संबंधित प्रश्‍न

\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\frac{x}{\sqrt{x + 4}} dx\]

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{1}{x \log x} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

\[\int e^{2x} \text{ sin x cos x dx }\]

Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]

Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Evaluate the following:

`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×