मराठी

Evaluate the following: d∫x21-x4dx put x2 = t - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int x^2/(1 - x^4) "d"x` put x2 = t

बेरीज

उत्तर

Let I = `int x^2/(1 - x^4) "d"x`

= `int x^2/((1 - x^2)(1 + x^2)) "d"x`

Put x2 = t for the purpose of partial fractions.

We get `"t"/((1 - "t")(1 + "t"))`

Resolving into partial fractions we put

`"t"/((1 - "t")(1 + "t")) = "A"/(1 - "t") + "B"/(1 + "t")`  .....[where A and B are arbitrary constants]

⇒ `"t"/((1 - "t")(1 + "t")) = ("A"(1 + "t") + "B"(1 - "t"))/((1 - "t")(1 + "t"))`

⇒ t = A + At + B – Bt

Comparing the like terms, we get A – B = 1 and A + B = 0

Solving the above equations

We have A = `1/2` and B = `- 1/2`

∴ I = `int (1/2)/(1 - x^2) "d"x + int ((-1)/2)/(1 + x^2) "d"x`  ...(Putting t = x2)

= `1/2 * 1/(2*1) log |(1 + x)/(1 - x)| - 1/2 tan^-1x + "C"`

= `1/4 log |(1 + x)/(1 - x)| - 1/2 tan^-1x + 'C"`

Hence, I = `1/4 log |(1 + x)/(1 - x)| - 1/2 tan^-1x + "C"`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 19 | पृष्ठ १६४
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×