Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
उत्तर
Let I = `int x^2/(1 - x^4) "d"x`
= `int x^2/((1 - x^2)(1 + x^2)) "d"x`
Put x2 = t for the purpose of partial fractions.
We get `"t"/((1 - "t")(1 + "t"))`
Resolving into partial fractions we put
`"t"/((1 - "t")(1 + "t")) = "A"/(1 - "t") + "B"/(1 + "t")` .....[where A and B are arbitrary constants]
⇒ `"t"/((1 - "t")(1 + "t")) = ("A"(1 + "t") + "B"(1 - "t"))/((1 - "t")(1 + "t"))`
⇒ t = A + At + B – Bt
Comparing the like terms, we get A – B = 1 and A + B = 0
Solving the above equations
We have A = `1/2` and B = `- 1/2`
∴ I = `int (1/2)/(1 - x^2) "d"x + int ((-1)/2)/(1 + x^2) "d"x` ...(Putting t = x2)
= `1/2 * 1/(2*1) log |(1 + x)/(1 - x)| - 1/2 tan^-1x + "C"`
= `1/4 log |(1 + x)/(1 - x)| - 1/2 tan^-1x + 'C"`
Hence, I = `1/4 log |(1 + x)/(1 - x)| - 1/2 tan^-1x + "C"`.
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
Integrate the rational function:
`x/((x^2+1)(x - 1))`
Integrate the rational function:
`2/((1-x)(1+x^2))`
Integrate the rational function:
`1/(x^4 - 1)`
Integrate the rational function:
`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]
Find :
`∫ sin(x-a)/sin(x+a)dx`
Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
`int sqrt(4^x(4^x + 4)) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int ("d"x)/(2 + 3tanx)`
`int x^3tan^(-1)x "d"x`
`int ("d"x)/(x^3 - 1)`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
`int x/((x - 1)^2 (x + 2)) "d"x`
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`