Advertisements
Advertisements
प्रश्न
Integrate the rational function:
`2/((1-x)(1+x^2))`
उत्तर
`2/((1 - x)(1 + x^2)) = A/(1 - x) = (Bx + C)/(1 + x^2)`
2 = A(1 + x2) + (1 - x) Bx + C
Put x = 1
2 = 2A + 0
⇒ A = 1
Put x = 0
2 = A + C
⇒ C = 1
Comparing the coefficients of x2 on both sides,
0 = A - B
⇒ B = A = 1
`therefore 2/((1 - x)(1 + x^2)) = 1/(1 - x) + (x + 1)/(1 + x^2)`
`= 1/(1 - x) + x/(1 + x^2) + 1/(1 + x^2)`
On integrating
`int 2/((1 - x)(1 + x^2)) dx`
`= int 1/(1 - x) dx + 1/2 int (2x)/(1 + x^2) dx + 1/(1 + x^2) dx`
`= - log abs (1 - x) + 1/2 log abs (1 + x^2) + tan^-1 x + C`
APPEARS IN
संबंधित प्रश्न
Find: `I=intdx/(sinx+sin2x)`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the rational function:
`1/(x(x^4 - 1))`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int 1/(2 + cosx - sinx) "d"x`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int ("d"x)/(2 + 3tanx)`
`int x sin2x cos5x "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
Evaluate `int x log x "d"x`
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
If `int(sin2x)/(sin5x sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate: `int (dx)/(2 + cos x - sin x)`
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Evaluate`int(5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`