Advertisements
Advertisements
प्रश्न
Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`
उत्तर
Let I = `(1)/(sinx*(3 + 2cosx))*dx`
= `int sinx/(sin^2x*(3 + 2cosx))*dx`
= `int sinx/((1 - cos^2x)(3 + 2cosx))*dx`
= `int sinx/((1 - cosx)(1 + cosx)(3 + 2cosx))*dx`
Put cos x = t
∴ – sinx.dx = dt
∴ sinx.dx = – dt
∴ I = `int (1)/((1 - t)(1 + t)(3 + 2t))*(-dt)`
= `int (-1)/((1 - t)(1 + t)(3 + 2t))*dt`
Let `(-1)/((1 - t)(1 + t)(3 + 2t)) = "A"/(1 - t) + "B"/(1 + t) + "C"/(3 + 2t)`
∴ – 1 = A(1 + t)(3 + 2t) + B(1 - t)(3 + 2t) + C(1 - t)(1 + t)
Put 1 – t = 0, i.e. t = 1, we get
– 1 = A(2)(5) + B(0)(5) + C(0)(2)
∴ – 1 = 10A
∴ A = `(-1)/(10)`
Put 1 + t = 0, i.e. t = – 1, we get
– 1 = A(0)(1) + B(2)(1) + C(2)(0)
∴ – 1 = 2B
∴ B = `-(1)/(2)`
Put 3 + 2t = 0, i.e. t = `-(3)/(2)`, we get
– 1 = `"A"(-1/2)(0) + "B"(5/2)(0) + "C"(5/2)(-1/2)`
∴ – 1 = `-(5)/(4)"C"`
∴ C = `(4)/(5)`
∴ `(-1)/((1 - t)(1 + t)(3 + 2t)) = (((-1)/(10)))/(1 - t) + ((-1/2))/(1 + t) + ((4/5))/(3 + 2t)`
∴ I = `int [(((-1)/10))/(1 - t) + ((-1/2))/(1 + t) + ((4/5))/(3 + 2t)]*dt`
= `-(1)/(10) int 1/(1 - t)*dt - (1)/(2) int 1/(1 + t)*dt + (4)/(5) int 1/(3 + 2t)*dt`
= `-(1)/(10) (log|1 - t|)/(-1) - (1)/(2) log | 1 + t| + 4/5 (log|3 + 2t|)/(2) + c`
= `(1)/(10)log|1 - cosx| - (1)/(2)log|1 + cosx| + (2)/(5)log|3 + 2cos| + c`.
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Find: `I=intdx/(sinx+sin2x)`
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
Integrate the rational function:
`x/((x^2+1)(x - 1))`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`1/(x^4 - 1)`
Integrate the rational function:
`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]
`int (xdx)/((x - 1)(x - 2))` equals:
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`
Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`
Integrate the following w.r.t.x:
`x^2/((x - 1)(3x - 1)(3x - 2)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int x^7/(1 + x^4)^2 "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int x sin2x cos5x "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
`int 1/(sinx(3 + 2cosx)) "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
`int x/((x - 1)^2 (x + 2)) "d"x`
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
If `int(sin2x)/(sin5x sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
`int 1/(x^2 + 1)^2 dx` = ______.
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Find: `int x^4/((x - 1)(x^2 + 1))dx`.
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`