Advertisements
Advertisements
प्रश्न
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
उत्तर
We have, `(2x^2 + 3)/(x^2(x^2 + 9))`
Now, let x2 = t
So, `(2t + 3)/(t(t + 9)) = A/t + B/(t + 9)`, we get A = `1/3` and B = `5/3`
`int (2x^2 + 3)/(x^2(x^2 + 9))dx = 1/3 int dx/x^2 + 5/3 int dx/(x^2 + 9)`
= `-1/(3x) + 5/9 tan^-1 (x/3) + c`, where 'c' is an arbitrary constant of integration.
APPEARS IN
संबंधित प्रश्न
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]
`int (dx)/(x(x^2 + 1))` equals:
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int x^7/(1 + x^4)^2 "d"x`
`int sqrt(4^x(4^x + 4)) "d"x`
`int (sinx)/(sin3x) "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int x^3tan^(-1)x "d"x`
`int ("d"x)/(x^3 - 1)`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int 1/(sinx(3 + 2cosx)) "d"x`
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Evaluate`int(5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`