मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

∫dxx3-1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int ("d"x)/(x^3 - 1)`

बेरीज

उत्तर

Let I = `int ("d"x)/(x^3 - 1)`

= `int 1/((x - 1)(x^2 + x + 1))  "d"x`

Let `1/((x - 1)(x^2 + x + 1))`

= `"A"/(x - 1) + ("B"x + "C")/(x^2 + x + 1)`

∴ 1 = A(x2 + x + 1) + (Bx + C)(x – 1)  .......(i)

Putting x = 1 in (i), we get

1 = A(12 + 1 + 1)

∴ 1 = 3A

∴  A = `1/3`

Putting x = 0 in (i), we get

1 = A(0 + 0 + 1) + (0 + C)(0 – 1)

∴ 1 = A – C

∴ 1 = `1/3 - "C"`

∴ C = `- 2/3`

Putting x = 2 in (i), we get

1 = A(22 + 2 + 1) + (2B + C)(2 – 1)

∴ 1 = 7A + 2B + C

∴ 1 = `7/3  + 2"B" - 2/3` 

∴ 1 = `5/3 + 2"B"`

∴ `(-2)/(3)` = 2B

∴ B = `-1/3`

∴ I = `int ((1/3)/(x - 1) + (-1/3x - 2/3)/(x^2 + x + 1))  "d"x`

= `1/3 int(1/(x - 1) - (x + 2)/(x^2 + x + 1))  "d"x`

= `1/3 int 1/(x - 1)  "d"x - 1/3 int (x + 2)/(x^2 + x + 1)  "d"x`

= `1/3 int 1/(x - 1)  "d"x - 1/3*1/2 int (2x + 4)/(x^2 + x + 1)  "d"x`

= `1/3 int 1/(x  1)  "d"x - 1/6 int ((2x + 1) + 3)/(x^2 + x + 1)*  "d"x`

= `1/3 int 1/(x - 1)  "d"x - 1/6 int (2x + 1)/(x^2 + x + 1)  "d"x - 1/2 int  ("d"x)/(x^2 + x + 1)`

= `1/3 log|x - 1| - 1/6 log|x^2 + x + 1| - 1/2 int ("d"x)/(x^2 + x + 1/4 - 1/4 + 1)`     ......`[∵  int ("f'"(x))/("f"(x))  "d"x = log|"f"(x)| + "c"]`

= `1/3  log|x - 1| - 1/6  log|x^2 + x + 1| - 1/2 int ("d"x)/((x + 1/2)^2 + (sqrt(3)/2)^2`

= `1/3  log|x - 1| - 1/6  log|x^2 + x + 1| - 1/2* 1/(sqrt(3)/2) tan^-1 ((x + 1/2)/(sqrt(3)/2)) + "c"`

∴ I = `1/3  log|x - 1| - 1/6  log|x^2 + x + 1| - 1/sqrt(3) tan^-1 ((2x + 1)/sqrt(3)) + "c"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.3: Indefinite Integration - Long Answers III

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find: `I=intdx/(sinx+sin2x)`


Integrate the rational function:

`x/((x + 1)(x+ 2))`


Integrate the rational function:

`1/(x^2 - 9)`


Integrate the rational function:

`(2x)/(x^2 + 3x + 2)`


Integrate the rational function:

`x/((x^2+1)(x - 1))`


Integrate the rational function:

`(5x)/((x + 1)(x^2 - 4))`


Integrate the rational function:

`(3x -1)/(x + 2)^2`


Integrate the rational function:

`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]


Integrate the rational function:

`1/(e^x -1)`[Hint: Put ex = t]


Evaluate : `∫(x+1)/((x+2)(x+3))dx`


Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`


Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`


Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`


Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`


Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`


Integrate the following w.r.t. x : `(1)/(x^3 - 1)`


Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`


Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`


Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`


Choose the correct options from the given alternatives :

If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =


Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`


Integrate the following w.r.t.x:

`x^2/((x - 1)(3x - 1)(3x - 2)`


Integrate the following w.r.t.x :  `sec^2x sqrt(7 + 2 tan x - tan^2 x)`


Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`


Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`


Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx


Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx


Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx


`int "dx"/(("x" - 8)("x" + 7))`=


For `int ("x - 1")/("x + 1")^3  "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.


Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx


`int (2x - 7)/sqrt(4x- 1) dx`


`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`


`int sqrt(4^x(4^x + 4))  "d"x`


`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`


`int sqrt((9 + x)/(9 - x))  "d"x`


`int 1/(4x^2 - 20x + 17)  "d"x`


`int (sinx)/(sin3x)  "d"x`


`int 1/(2 +  cosx - sinx)  "d"x`


`int "e"^x ((1 + x^2))/(1 + x)^2  "d"x`


`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)  "d"x`


`int ("d"x)/(2 + 3tanx)`


`int x^3tan^(-1)x  "d"x`


`int  x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))  "d"x`


`int (sin2x)/(3sin^4x - 4sin^2x + 1)  "d"x`


Choose the correct alternative:

`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?


`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c


If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c


Evaluate `int (2"e"^x + 5)/(2"e"^x + 1)  "d"x`


Evaluate `int x log x  "d"x`


Evaluate the following:

`int x^2/(1 - x^4) "d"x` put x2 = t


Evaluate the following:

`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`


Evaluate the following:

`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`


Evaluate the following:

`int "e"^(-3x) cos^3x  "d"x`


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.


Evaluate: `int (dx)/(2 + cos x - sin x)`


Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`


Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`


If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)


Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.


If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1  x/2 + B tan^-1(x/3) + C`, then A – B = ______.


Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.


Evaluate`int(5x^2-6x+3)/(2x-3)dx`


Evaluate: 

`int 2/((1 - x)(1 + x^2))dx`


Evaluate:

`int (x + 7)/(x^2 + 4x + 7)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×