मराठी

Evaluate the following: ed∫e-3xcos3x dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int "e"^(-3x) cos^3x  "d"x`

बेरीज

उत्तर

Let I = `int "e"^(-3x) cos^3x  "d"x`

= `int "e"^(-3x) ((cos 3x + 3 cosx)/4) "d"x`

= `1/4 int ("e"^(-3x) cos 3x + "e"^(-3x) cos x) "d"x`

= `1/4 ("I"_1 + "I"_2)`

I1 = `int "e"^(-3x) cos 3x "d"x`

= `"e"^(-3x) int cos 3x "d"x - int (("e"^(-3x)) int cos 3x  "d"x) "d"x`

= `"e"^(-3x)  sin  (3x)/3- int - 3"e"^(-3x) sin  (3x)/3 "d"x`

= `"e"^(-3x) sin  (3x)/3 + "e"^(-3x) sin 3x "d"x`

= `"e"^(-3x) sin  (3x)/3 + "e"^(-3x) cos  (3x)/3 - int (("e"^(-3x))"'" int sin 3 x  "d"x)"d"x`

= `"e"^(-3x) sin  (3x)/3 - "e"^(-3x) cos  (3x)/3 - int "e"^(-3x) cos 3x  "d"x`

= `"e"^(-3x) sin  (3x)/3 - "e"^(-3x) cos  (3x)/3 - "I"_1`

⇒ 2I = ("e"^(-3x))/3 (sin 3x - cos 3x)`

⇒ I1 = `("e"^(-3x))/6 (sin 3x - cos 3x) + "C"_1`

Similarly I2 = `int "e"^(-3x) cos x"d"x`

= `("e"^(-3x))/10 (sin 3x - 3 cos 3x) + "C"_2`

 ⇒ I = `1/4 [("e"^(-3x))/6 (sin 3x - cos 3x) + "e"^(-3x)/10 (sin 3x - 3 cos 3x)] + "C"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 42 | पृष्ठ १६६

संबंधित प्रश्‍न

Evaluate:

`int x^2/(x^4+x^2-2)dx`


Find: `I=intdx/(sinx+sin2x)`


Integrate the rational function:

`(3x - 1)/((x - 1)(x - 2)(x - 3))`


Integrate the rational function:

`(3x + 5)/(x^3 - x^2 - x + 1)`


`int (xdx)/((x - 1)(x - 2))` equals:


Find : 

`∫ sin(x-a)/sin(x+a)dx`


Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`


Integrate the following w.r.t. x : `(1)/(x^3 - 1)`


Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`


Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`


Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`


Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`


Integrate the following w.r.t.x:

`x^2/((x - 1)(3x - 1)(3x - 2)`


Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`


Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx


State whether the following statement is True or False.

If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.


Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx


`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`


`int x^2sqrt("a"^2 - x^6)  "d"x`


`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`


`int sqrt((9 + x)/(9 - x))  "d"x`


`int (sin2x)/(3sin^4x - 4sin^2x + 1)  "d"x`


`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c


Evaluate `int x log x  "d"x`


Evaluate the following:

`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`


Evaluate: `int (dx)/(2 + cos x - sin x)`


Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`


Evaluate:

`int x/((x + 2)(x - 1)^2)dx`


Evaluate.

`int (5x^2 - 6x + 3) / (2x -3) dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×