Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
उत्तर
Let I = `int "e"^(-3x) cos^3x "d"x`
= `int "e"^(-3x) ((cos 3x + 3 cosx)/4) "d"x`
= `1/4 int ("e"^(-3x) cos 3x + "e"^(-3x) cos x) "d"x`
= `1/4 ("I"_1 + "I"_2)`
I1 = `int "e"^(-3x) cos 3x "d"x`
= `"e"^(-3x) int cos 3x "d"x - int (("e"^(-3x)) int cos 3x "d"x) "d"x`
= `"e"^(-3x) sin (3x)/3- int - 3"e"^(-3x) sin (3x)/3 "d"x`
= `"e"^(-3x) sin (3x)/3 + "e"^(-3x) sin 3x "d"x`
= `"e"^(-3x) sin (3x)/3 + "e"^(-3x) cos (3x)/3 - int (("e"^(-3x))"'" int sin 3 x "d"x)"d"x`
= `"e"^(-3x) sin (3x)/3 - "e"^(-3x) cos (3x)/3 - int "e"^(-3x) cos 3x "d"x`
= `"e"^(-3x) sin (3x)/3 - "e"^(-3x) cos (3x)/3 - "I"_1`
⇒ 2I = ("e"^(-3x))/3 (sin 3x - cos 3x)`
⇒ I1 = `("e"^(-3x))/6 (sin 3x - cos 3x) + "C"_1`
Similarly I2 = `int "e"^(-3x) cos x"d"x`
= `("e"^(-3x))/10 (sin 3x - 3 cos 3x) + "C"_2`
⇒ I = `1/4 [("e"^(-3x))/6 (sin 3x - cos 3x) + "e"^(-3x)/10 (sin 3x - 3 cos 3x)] + "C"`
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Find: `I=intdx/(sinx+sin2x)`
Integrate the rational function:
`(3x - 1)/((x - 1)(x - 2)(x - 3))`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
`int (xdx)/((x - 1)(x - 2))` equals:
Find :
`∫ sin(x-a)/sin(x+a)dx`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `(1)/(x^3 - 1)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`
Integrate the following w.r.t.x:
`x^2/((x - 1)(3x - 1)(3x - 2)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int x^2sqrt("a"^2 - x^6) "d"x`
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int sqrt((9 + x)/(9 - x)) "d"x`
`int (sin2x)/(3sin^4x - 4sin^2x + 1) "d"x`
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
Evaluate `int x log x "d"x`
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
Evaluate: `int (dx)/(2 + cos x - sin x)`
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`