Advertisements
Advertisements
प्रश्न
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
उत्तर
Let `(3x + 5)/(x^3 - x^2 - x + 1)`
`= (3x + 5)/(x^2(x - 1) - 1(x - 1))`
`= (3x + 5)/((x^2 - 1)(x - 1))`
`= (3x + 5)/((x + 1)(x - 1)^2)`
`(3x + 5)/((x + 1)(x - 1)^2) = A/(x + 1) = B/(x - 1) + C/((x - 1)^2)`
3x + 5 = A(x - 1)2 + B(x2 - 1) + C(x + 1) ... (i)
Put x = 1
8 = 0 + 0 + 2C
⇒ C = 4
Put x = -1
2 = A(-2)2 + 0 = 0
⇒ A = `-1/2`
On comparing the coefficients of x2
0 = A + B
⇒ A = -A `= 1/2`
Hence, `(3x + 5)/(x^3 - x^2 - x + 1)`
`= -1/(2(x + 1)) + 1/(2(x - 1)) + 4/((x - 1)^2)`
On integrating,
`int (3x + 5)/(x^3 - x^2 - x + 1)`
`= -1/2 int 1/(x + 1) dx + 1/2 int 1/(x - 1) dx + 4 int 1/((x - 1)^2) dx`
`= -1/2 log abs (x + 1) + 1/2 log (x - 1) + 4 (1/((x - 1))) + C`
`= 1/2 log abs ((x + 1)/(x - 1)) - 4/((x - 1)) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Integrate the rational function:
`1/(x^4 - 1)`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
Integrate the rational function:
`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]
Integrate the rational function:
`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`
Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`
Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(1)/(x^3 - 1)`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int 1/(x(x^3 - 1)) "d"x`
If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)
`int x^3tan^(-1)x "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
`int 1/(4x^2 - 20x + 17) "d"x`
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`
Evaluate:
`int(2x^3 - 1)/(x^4 + x)dx`