Advertisements
Advertisements
प्रश्न
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
उत्तर
Let `(3x + 5)/(x^3 - x^2 - x + 1)`
`= (3x + 5)/(x^2(x - 1) - 1(x - 1))`
`= (3x + 5)/((x^2 - 1)(x - 1))`
`= (3x + 5)/((x + 1)(x - 1)^2)`
`(3x + 5)/((x + 1)(x - 1)^2) = A/(x + 1) = B/(x - 1) + C/((x - 1)^2)`
3x + 5 = A(x - 1)2 + B(x2 - 1) + C(x + 1) ... (i)
Put x = 1
8 = 0 + 0 + 2C
⇒ C = 4
Put x = -1
2 = A(-2)2 + 0 = 0
⇒ A = `-1/2`
On comparing the coefficients of x2
0 = A + B
⇒ A = -A `= 1/2`
Hence, `(3x + 5)/(x^3 - x^2 - x + 1)`
`= -1/(2(x + 1)) + 1/(2(x - 1)) + 4/((x - 1)^2)`
On integrating,
`int (3x + 5)/(x^3 - x^2 - x + 1)`
`= -1/2 int 1/(x + 1) dx + 1/2 int 1/(x - 1) dx + 4 int 1/((x - 1)^2) dx`
`= -1/2 log abs (x + 1) + 1/2 log (x - 1) + 4 (1/((x - 1))) + C`
`= 1/2 log abs ((x + 1)/(x - 1)) - 4/((x - 1)) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int x^2/((x^2+2)(2x^2+1))dx`
Find : `int x^2/(x^4+x^2-2) dx`
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`(2x)/((x^2 + 1)(x^2 + 3))`
`int (xdx)/((x - 1)(x - 2))` equals:
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `(1)/(x^3 - 1)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
`int "dx"/(("x" - 8)("x" + 7))`=
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int x^7/(1 + x^4)^2 "d"x`
`int sqrt(4^x(4^x + 4)) "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int ("d"x)/(2 + 3tanx)`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
`int ("d"x)/(x^3 - 1)`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Find: `int x^4/((x - 1)(x^2 + 1))dx`.
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`