Advertisements
Advertisements
प्रश्न
Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`
उत्तर
Let I = `int (2x)/(4 - 3x - x^2).dx`
Let `(2x)/(4 - 3x - x^2)`
= `(2x)/((4 + x)(1 - x)`
= `"A"/(4 + x) + "B"/(1 - x)`
∴ 2x = A(1 – x) + B(4 + x)
Put 4 + x = 0, i.e. x = – 4, we get
– 8 = A(5) + B(0)
∴ A = `-(8)/(5)`
Put 1 – x = 0, i.e x = 1, we
2 = A(0) + B(5)
∴ B = `(2)/(5)`
∴ `(2x)/(4 - 3x - x^2) = ((-8/5))/(4 + x) + ((2/5))/(1 - x)`
∴ I = `int [((-8)/5)/(4 + x) + ((2/5))/(1 - x)].dx`
= `-(8)/(5) int(1)/(4 + x).dx + (2)/(5) int (1)/(1 - x).dx`
= `-(8)/(5)log|4 + x| + (2)/(5).(log|1 - x|)/(-1) + c`
= `-(8)/(5)log|4 + x| - (2)/(5)log|1 - x| + c`.
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Find: `I=intdx/(sinx+sin2x)`
Integrate the rational function:
`x/((x-1)(x- 2)(x - 3))`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`(x^3 + x + 1)/(x^2 -1)`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Integrate the rational function:
`1/(x^4 - 1)`
Integrate the rational function:
`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]
`int (xdx)/((x - 1)(x - 2))` equals:
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`
Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t.x:
`x^2/((x - 1)(3x - 1)(3x - 2)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
Evaluate: `int 1/("x"("x"^5 + 1))` dx
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
`int "dx"/(("x" - 8)("x" + 7))`=
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
`int (2x - 7)/sqrt(4x- 1) dx`
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int x^2sqrt("a"^2 - x^6) "d"x`
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int (sinx)/(sin3x) "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int ("d"x)/(2 + 3tanx)`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
`int x^3tan^(-1)x "d"x`
`int x sin2x cos5x "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
`int ("d"x)/(x^3 - 1)`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int (sin2x)/(3sin^4x - 4sin^2x + 1) "d"x`
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
Evaluate `int x log x "d"x`
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Evaluate`int(5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate:
`int(2x^3 - 1)/(x^4 + x)dx`