Advertisements
Advertisements
प्रश्न
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
उत्तर
Let I = `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
`= int (5"x"^2 + 20"x" + 6)/("x"("x"^2 + 2"x" + 1))` dx
`= int (5"x"^2 + 20"x" + 6)/("x"("x + 1")^2)` dx
Let `(5"x"^2 + 20"x" + 6)/("x"("x + 1")^2) = "A"/"x" + "B"/"x + 1" + "C"/("x + 1")^2`
∴ 5x2 + 20x + 6 = A(x + 1)2 + B(x + 1)x + Cx ...(i)
Putting x = 0 in (i), we get
5(0) + 20(0) + 6 = A(1)2 + B(1)(0) + C(0)
∴ A = 6
Putting x = - 1 in (i), we get
5 (1) + 20(- 1) + 6 = A (0)+ B (0) (- 1) + C (-1)
∴ - 9 = - C
∴ C = 9
Putting x = 1 in (i), we get
5 (1) + 20 (1) + 6 = A (2)2 + B (2) (1) + C (1)
∴ 31 = 4A + 2B + C
∴ 31 = 4(6) + 2B + 9
∴ B = - 1
∴ `(5"x"^2 + 20"x" + 6)/("x"("x + 1")^2) = 6/"x" + (-1)/"x + 1" + 9/("x + 1")^2`
∴ I = `int [6/"x" + (- 1)/"x + 1" + 9/("x + 1")^2]` dx
`= 6 int 1/"x" "dx" - int 1/"x + 1" "dx" + 9 int ("x + 1")^-2` dx
`= 6 log |"x"| - log |"x + 1"| + 9("x + 1")^-1/(-1)` + c
∴ I = `6 log |"x"| - log |"x + 1"| - 9/("x + 1")` + c
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`x/((x-1)(x- 2)(x - 3))`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int 1/(sinx(3 + 2cosx)) "d"x`
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
Evaluate `int x log x "d"x`
Evaluate `int x^2"e"^(4x) "d"x`
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
`int 1/(x^2 + 1)^2 dx` = ______.
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`