Advertisements
Advertisements
प्रश्न
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
उत्तर
Let I = `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
Let 2ex + 5 = `"A" (2"e"^x + 1) + "B" "d"/("d"x) (2"e"^x + 1)`
= 2Aex + A + B(2ex)
∴ 2ex + 5 = (2A + 2B)ex + A
Comparing the coefficients of ex and constant term on both sides,
we get 2A + 2B = 2 and A = 5
Solving these equations, we get
B = – 4
∴ I = `int(5(2"e"^x + 1) - 4(2"e"^x))/(2"e"^x + 1) "d"x`
= `5int "d"x - 4int (2"e"^x)/(2"e"^x + 1) "d"x`
∴ I = 5x – 4log|2e + 1| + c ......`[because int ("f'"(x))/("f"(x)) "d"x = log|"f"(x)| + "c"]`
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`(3x - 1)/((x - 1)(x - 2)(x - 3))`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`(2x)/((x^2 + 1)(x^2 + 3))`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int ("d"x)/(x^3 - 1)`
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Find: `int x^4/((x - 1)(x^2 + 1))dx`.
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`