Advertisements
Advertisements
प्रश्न
Evaluate `int 1/(x log x) "d"x`
उत्तर
Let I = `int 1/(x log x) "d"x`
Put log x = t
∴ `1/x "d"x` = dt
∴ I = `int1/"t" "dt"` = log|t| + c
∴ I = log |log x| + c
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
Integrate the function in x tan-1 x.
Integrate the function in x cos-1 x.
Integrate the function in (sin-1x)2.
Evaluate the following : `int x.cos^3x.dx`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
`int(x + 1/x)^3 dx` = ______.
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
`int 1/sqrt(x^2 - 9) dx` = ______.
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate the following.
`intx^3e^(x^2) dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).