Advertisements
Advertisements
Question
Evaluate `int 1/(x log x) "d"x`
Solution
Let I = `int 1/(x log x) "d"x`
Put log x = t
∴ `1/x "d"x` = dt
∴ I = `int1/"t" "dt"` = log|t| + c
∴ I = log |log x| + c
APPEARS IN
RELATED QUESTIONS
`intx^2 e^(x^3) dx` equals:
Evaluate the following : `int x^3.logx.dx`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Integrate the following w.r.t.x : log (x2 + 1)
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
`int 1/x "d"x` = ______ + c
`int"e"^(4x - 3) "d"x` = ______ + c
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
`int 1/sqrt(x^2 - a^2)dx` = ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Evaluate:
`inte^x sinx dx`
Evaluate:
`int e^(logcosx)dx`
Evaluate `int (1 + x + x^2/(2!))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx