Advertisements
Advertisements
Question
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Solution
Let I = `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Put log x = t
∴ `1/"x" "dx" = "dt"`
∴ I = `int "dt"/("t"^2 + 4"t" - 1)`
`= int 1/("t"^2 + 4"t" + 4 - 4 - 1)`dt
`= int 1/(("t + 2")^2 - 5)` dt
`= int 1/(("t + 2")^2 - (sqrt5)^2)` dt
`= 1/(2 sqrt5) log |("t" + 2 - sqrt5)/("t" + 2 + sqrt5)|` + c
∴ I = `1/(2 sqrt5) log|(log"x" + 2 - sqrt5)/(log "x" + 2 + sqrt5)|` + c
APPEARS IN
RELATED QUESTIONS
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following w.r.t.x : log (log x)+(log x)–2
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
`int ("d"x)/(x - x^2)` = ______
∫ log x · (log x + 2) dx = ?
`int cot "x".log [log (sin "x")] "dx"` = ____________.
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
`int 1/sqrt(x^2 - 9) dx` = ______.
Find: `int e^x.sin2xdx`
`int 1/sqrt(x^2 - a^2)dx` = ______.
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
`int(1-x)^-2 dx` = ______
Evaluate `int(1 + x + x^2/(2!))dx`.