English

Integrate the following w.r.t.x : log (log x)+(log x)–2 - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following w.r.t.x : log (log x)+(log x)–2 

Sum

Solution

Let I = `int [log (logx) + (logx)^-2]*dx`

= `int [log(logx) + 1/(log x)^2]*dx`
Put log x = t
∴ x = et
∴ x = et·dt

∴ I = `int (log t + 1/t^2)e^t*dt`

= `int e^t (log t + 1/t - 1/t + 1/t^2)*dt`

= `int [e^t (log t 1/t) + e^t (-1/t + 1/t^2)]*dt`

= `inte^t (log t + 1/t)*dt - int e^t (1/t - 1/t^2)*dt`

= I1 – I2 

In I1, Put f(t) = log t. Then f'(t) = `(1/t)`

∴ I1 = `int e^t [f(t) + f'(t)]*dt`

= `e^t f(t)`

= `e^t log t`

In I2, Put g(t) = `(1/t)`. Then g'(t) = `-(1/t^2)`

∴ I2 = `int e^t ["g"(t) + "g"'(t)]*dt`

= `e^t "g" (t)`

= `e^t*(1/t)`

∴ I = `e^t log t - e^t/t + c`

= `xlog (logx) - x/logx + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Miscellaneous Exercise 3 [Page 150]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 3.08 | Page 150

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


Integrate the function in x sin-1 x.


Integrate the function in x tan-1 x.


Integrate the function in x cos-1 x.


Integrate the function in (x2 + 1) log x.


Integrate the function in `(xe^x)/(1+x)^2`.


Integrate the function in `((x- 3)e^x)/(x - 1)^3`.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


Evaluate the following : `int x^2.log x.dx`


Evaluate the following : `int e^(2x).cos 3x.dx`


Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`


Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`


Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : cot–1 (1 – x + x2)


Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Evaluate the following.

`int "e"^"x" "x"/("x + 1")^2` dx


Evaluate the following.

`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


`int 1/(4x + 5x^(-11))  "d"x`


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


`int 1/sqrt(2x^2 - 5)  "d"x`


`int (cos2x)/(sin^2x cos^2x)  "d"x`


Choose the correct alternative:

`intx^(2)3^(x^3) "d"x` =


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


`int(x + 1/x)^3 dx` = ______.


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


∫ log x · (log x + 2) dx = ?


`int cot "x".log [log (sin "x")] "dx"` = ____________.


`int log x * [log ("e"x)]^-2` dx = ?


The value of `int "e"^(5x) (1/x - 1/(5x^2))  "d"x` is ______.


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


`int 1/sqrt(x^2 - 9) dx` = ______.


Find: `int e^x.sin2xdx`


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


`int 1/sqrt(x^2 - a^2)dx` = ______.


If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


`int(1-x)^-2 dx` = ______


Evaluate the following.

`int x^3 e^(x^2) dx`


`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.


`int logx  dx = x(1+logx)+c`


`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`


Evaluate:

`int (sin(x - a))/(sin(x + a))dx`


Evaluate:

`int1/(x^2 + 25)dx`


Evaluate the following:

`intx^3e^(x^2)dx` 


Evaluate the following.

`int x^3 e^(x^2) dx` 


Evaluate the following.

`intx^2e^(4x)dx`


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×