English

Integrate the function in xex(1+x)2. - Mathematics

Advertisements
Advertisements

Question

Integrate the function in `(xe^x)/(1+x)^2`.

Sum

Solution

Let `I = int (xe^x)/((1 + x)^2)  dx`

`= int ((x + 1 - 1) e^x)/((1 + x)^2)  dx`

`= int 1/((1 + x)) . e^x dx - (e^x - 1)/((1 + x)^2)  dx`

`= 1/((1 + x)). e^x - int (-1)/((1 + x^2)).e^x  dx - int e^x/((1 + x^2))  dx + C`

`= e^x/(1 + x) + int e^x/((1 + x)^2)  dx - int e^x/((1 + x)^2)  dx + C`

`= e^x/(1 + x) + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.6 [Page 328]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.6 | Q 17 | Page 328

RELATED QUESTIONS

Prove that:

`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`


Integrate the function in x sin-1 x.


Integrate the function in tan-1 x.


Integrate the function in ex (sinx + cosx).


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following : `int x^3.logx.dx`


Evaluate the following : `int x^2*cos^-1 x*dx`


Evaluate the following : `int logx/x.dx`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


`int 1/sqrt(2x^2 - 5)  "d"x`


`int sin4x cos3x  "d"x`


`int sqrt(tanx) + sqrt(cotx)  "d"x`


The value of `int "e"^(5x) (1/x - 1/(5x^2))  "d"x` is ______.


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


`int 1/sqrt(x^2 - 9) dx` = ______.


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


Find: `int e^x.sin2xdx`


Solve: `int sqrt(4x^2 + 5)dx`


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


`int_0^1 x tan^-1 x  dx` = ______.


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


`int(1-x)^-2 dx` = ______


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.


Evaluate `int(1 + x + (x^2)/(2!))dx`


Solve the following

`int_0^1 e^(x^2) x^3 dx`


Evaluate:

`intcos^-1(sqrt(x))dx`


The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`int x^3 e^(x^2) dx` 


The value of `inta^x.e^x dx` equals


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×