English

Evaluate the following: d∫(cos5x+cos4x)1-2cos3xdx - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`

Sum

Solution

Let I = `int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`

= `int (2cos  (5x + 4x)/2 * cos  (5x - 4x)/2)/(1 - 2(2 cos^2  (3x)/2 - 1)) "d"x`

= `int (2cos  (9x)/2 * cos  x/2)/(1 - 4 cos^2  (3x)/2 + 2) "d"x`

= `int (2cos  (9x)/2 * cos  x/2)/(3 - 4 cos^2  (3x)/2)  "d"x`

= `- int (2 cos  (9x)/2 * cos  x/2)/(4 cos^2  (3x)/2 - 3)  "d"x`

= `- int (2cos  (9x)/2 * cos  x/2 * cos  (3x)/2)/(4 cos^2  (3x)/2 - 3 cos  (3x)/2) "d"x`  ....`["Multiplying and dividing by" cos  (3x)/2]`

= `int (2  cos  (9x)/2 * cos  x/2 * cos  (3x)/2)/(cos 3 * (3x)/2)  "dx"`  ......[∵ cos 3x = 4 cos3x – 3 cos x]

= `- int (2cos  (9x)/2 * cos  x/2 * cos  (3x)/2)/(cos  (9x)/2)  "d"x`

= `- int 2 cos  (3x)/2 * cos  x/2  "d"x`

= `- int [cos((3x)/2 + x/2) + cos((3x)/2 - x/2)] "d"x`

= `- int (cos 2x + cos x) "d"x`  ....[∵ 2 cos A cos B = cos (A + B) + cos (A – B)]

= `- int cos 2x  "d"x - int cos x "d"x`

= `- 1/2 sin 2x - sin x + "C"`

Hence, I = `- [1/2 sin 2x + sin x] + "C"`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise [Page 164]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Exercise | Q 22 | Page 164

RELATED QUESTIONS

Prove that:

`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`


Integrate the function in x sin 3x.


Integrate the function in x (log x)2.


Evaluate the following : `int cos sqrt(x).dx`


Evaluate the following : `int x.cos^3x.dx`


Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`


Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : cot–1 (1 – x + x2)


Evaluate the following.

∫ x log x dx


Evaluate the following.

`int [1/(log "x") - 1/(log "x")^2]` dx


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx


`int (sinx)/(1 + sin x)  "d"x`


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


Evaluate `int 1/(x(x - 1))  "d"x`


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


Evaluate: 

`int(1+logx)/(x(3+logx)(2+3logx))  dx`


`int logx  dx = x(1+logx)+c`


Evaluate the following.

`intx^3  e^(x^2) dx`


Evaluate `int (1 + x + x^2/(2!))dx`


If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Evaluate the following.

`intx^2e^(4x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×