Advertisements
Advertisements
Question
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
Solution
Let I = `int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
= `int (2cos (5x + 4x)/2 * cos (5x - 4x)/2)/(1 - 2(2 cos^2 (3x)/2 - 1)) "d"x`
= `int (2cos (9x)/2 * cos x/2)/(1 - 4 cos^2 (3x)/2 + 2) "d"x`
= `int (2cos (9x)/2 * cos x/2)/(3 - 4 cos^2 (3x)/2) "d"x`
= `- int (2 cos (9x)/2 * cos x/2)/(4 cos^2 (3x)/2 - 3) "d"x`
= `- int (2cos (9x)/2 * cos x/2 * cos (3x)/2)/(4 cos^2 (3x)/2 - 3 cos (3x)/2) "d"x` ....`["Multiplying and dividing by" cos (3x)/2]`
= `int (2 cos (9x)/2 * cos x/2 * cos (3x)/2)/(cos 3 * (3x)/2) "dx"` ......[∵ cos 3x = 4 cos3x – 3 cos x]
= `- int (2cos (9x)/2 * cos x/2 * cos (3x)/2)/(cos (9x)/2) "d"x`
= `- int 2 cos (3x)/2 * cos x/2 "d"x`
= `- int [cos((3x)/2 + x/2) + cos((3x)/2 - x/2)] "d"x`
= `- int (cos 2x + cos x) "d"x` ....[∵ 2 cos A cos B = cos (A + B) + cos (A – B)]
= `- int cos 2x "d"x - int cos x "d"x`
= `- 1/2 sin 2x - sin x + "C"`
Hence, I = `- [1/2 sin 2x + sin x] + "C"`.
APPEARS IN
RELATED QUESTIONS
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
Integrate the function in x sin 3x.
Integrate the function in x (log x)2.
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int x.cos^3x.dx`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
`int (sinx)/(1 + sin x) "d"x`
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
Evaluate `int 1/(x(x - 1)) "d"x`
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
`int logx dx = x(1+logx)+c`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate `int (1 + x + x^2/(2!))dx`
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate the following.
`intx^2e^(4x)dx`