English

If u and v ore differentiable functions of x. then prove that: ∫uv dx=u∫v dx-∫[dud∫v dx]dx Hence evaluate ∫logx dx - Mathematics and Statistics

Advertisements
Advertisements

Question

If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`

Sum

Solution

Let `intv  dx`= w   ......(i)

Then, `(dw)/(dx)` = v   ......(ii)

Now, `d/(dx)(u, w) = u. d/(dx)(w) + w d/(dx)(u)`

= `u.v + w  (du)/(dx)`  ......[From (ii)]

By definition of integration

u.w = `int[u.v + w . (du)/(dx)]dx`

∴ u.w = `intu.v  dx + intw.  (du)/(dx) dx`

∴ `intu.v  dx = u.w - intw.  (du)/(dx) dx`

= `uintv  dx - int[(du)/(dx) intv.  dx]dx`  ......[Using (i)]

Hence, `intlogx  dx = xlogx - int  1/x x xx dx`

= x log x – x + C

shaalaa.com
  Is there an error in this question or solution?
2021-2022 (March) Set 1

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


Integrate : sec3 x w. r. t. x.


Integrate the function in x sin 3x.


Integrate the function in `x^2e^x`.


Integrate the function in x log x.


Integrate the function in xlog x.


Integrate the function in x tan-1 x.


Integrate the function in x cos-1 x.


Integrate the function in x (log x)2.


Integrate the function in `((x- 3)e^x)/(x - 1)^3`.


`intx^2 e^(x^3) dx` equals: 


`int e^x sec x (1 +   tan x) dx` equals:


Evaluate the following : `int x^2 sin 3x  dx`


Evaluate the following : `int x tan^-1 x .dx`


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int sin θ.log (cos θ).dθ`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t.x:

`e^-x cos2x`


Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`


Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`


Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`


Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`


Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`


Integrate the following functions w.r.t.x:

`e^(5x).[(5x.logx + 1)/x]`


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


Choose the correct options from the given alternatives :

`int (log (3x))/(xlog (9x))*dx` =


Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Integrate the following w.r.t.x : cot–1 (1 – x + x2)


Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`


Integrate the following w.r.t.x : log (log x)+(log x)–2 


Integrate the following w.r.t.x : e2x sin x cos x


Evaluate the following.

∫ x log x dx


Evaluate the following.

`int "x"^2 "e"^"4x"`dx


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


Evaluate the following.

`int "e"^"x" "x"/("x + 1")^2` dx


Evaluate the following.

`int "e"^"x" "x - 1"/("x + 1")^3` dx


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`


Evaluate: `int "dx"/("9x"^2 - 25)`


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


Evaluate: `int "dx"/(5 - 16"x"^2)`


Evaluate: ∫ (log x)2 dx


`int (sinx)/(1 + sin x)  "d"x`


`int(x + 1/x)^3 dx` = ______.


`int 1/x  "d"x` = ______ + c


`int"e"^(4x - 3) "d"x` = ______ + c


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


Evaluate `int 1/(x(x - 1))  "d"x`


`int "e"^x x/(x + 1)^2  "d"x`


∫ log x · (log x + 2) dx = ?


`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.


`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


`int 1/sqrt(x^2 - 9) dx` = ______.


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.


`int1/sqrt(x^2 - a^2) dx` = ______


Evaluate: 

`int(1+logx)/(x(3+logx)(2+3logx))  dx`


`int1/(x+sqrt(x))  dx` = ______


The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.


Evaluate:

`int (logx)^2 dx`


The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.


Evaluate:

`int (sin(x - a))/(sin(x + a))dx`


Evaluate:

`int1/(x^2 + 25)dx`


Evaluate the following.

`intx^3 e^(x^2) dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


Evaluate the following.

`intx^3e^(x^2) dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Evaluate the following.

`int x^3 e^(x^2) dx` 


Evaluate `int(1 + x + x^2/(2!))dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×