Advertisements
Advertisements
Question
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Solution
Let I = `int 1/(1 + "e"^"x")`dx
Dividing Nr. and Dr. by ex, we get
I = `int "e"^-"x"/("e"^-"x" + 1)` dx
Put `"e"^-"x" + 1` = t
∴ `- "e"^-"x" "dx" = "dt"`
∴ `"e"^-"x" "dx" = - "dt"`
∴ I = `int (- "dt")/"t" = - log |"t"| + "c"`
∴ I = - log `|"e"^-"x" + 1|` + c
APPEARS IN
RELATED QUESTIONS
Integrate the function in x sin 3x.
Integrate the function in x cos-1 x.
Integrate the function in (x2 + 1) log x.
Evaluate the following : `int x^2tan^-1x.dx`
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
`int ("x" + 1/"x")^3 "dx"` = ______
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
`int 1/x "d"x` = ______ + c
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
`int logx dx = x(1+logx)+c`
Evaluate `int (1 + x + x^2/(2!))dx`