Advertisements
Advertisements
Question
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Solution
Let I = `int "e^x/sqrt(e^(2x) + 4e^x + 13)` dx
`= int e^x/sqrt((e^x)^2 + 4e^x + 13)` dx
Put ex = t
∴ ex dx = dt
∴ I = `(dt)/(sqrt(t^2 + 4t + 13))`
`= int 1/sqrt(t^2 + 4t + 4 - 4 + 13)` dt
`= int 1/(sqrt((t + 2)^2 + 9))` dt
`= int 1/(sqrt((t + 2)^2 + (3)^2))` dt
`= log |t + 2 + sqrt((t + 2)^2 + (3)^2)|` + c
`= log |(t + 2) + sqrt(t^2 + 4t + 13)| + c`
∴ I = `log |(e^x + 2) + sqrt(e^(2x) + 4e^x + 13)| + c`
APPEARS IN
RELATED QUESTIONS
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
Integrate the function in `x^2e^x`.
Integrate the function in x (log x)2.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
`int ("x" + 1/"x")^3 "dx"` = ______
`int (sinx)/(1 + sin x) "d"x`
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
Evaluate `int 1/(x(x - 1)) "d"x`
`int logx/(1 + logx)^2 "d"x`
`int 1/sqrt(x^2 - 8x - 20) "d"x`
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
Find: `int e^x.sin2xdx`
`int(1-x)^-2 dx` = ______
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
`int logx dx = x(1+logx)+c`
Evaluate `int(1 + x + (x^2)/(2!))dx`
Evaluate `int tan^-1x dx`
Evaluate the following:
`intx^3e^(x^2)dx`