English

Evaluate the following. ∫[1logx-1(logx)2] dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following.

`int [1/(log "x") - 1/(log "x")^2]` dx

Sum

Solution

Let I = `int [1/(log "x") - 1/(log "x")^2]` dx

Put log x = t

∴ x = et

∴ dx = edt

∴ I = `int "e"^"t" [1/"t" - 1/"t"^2]` dt

Put f(t) = `1/"t"`

∴ f '(t) = `(-1)/"t"^2`

∴ I = `int "e"^"t" ["f"("t") + "f" '("x")]` dt

`= "e"^"t"  "f"("t")` + c

∴ I = `"e"^"t" (1/"t") + "c" = "x"/(log "x")` + c

shaalaa.com

Notes

The answer in the textbook is incorrect.

  Is there an error in this question or solution?
Chapter 5: Integration - EXERCISE 5.5 [Page 133]

RELATED QUESTIONS

Integrate : sec3 x w. r. t. x.


`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


Integrate the function in x sin x.


Integrate the function in (x2 + 1) log x.


`int e^x sec x (1 +   tan x) dx` equals:


Evaluate the following : `int logx/x.dx`


Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`


Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


`int (sinx)/(1 + sin x)  "d"x`


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`


`int(logx)^2dx` equals ______.


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×