English

Evaluate: ∫0π4dx1+tanx - Mathematics

Advertisements
Advertisements

Question

Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`

Sum

Solution

Let I = `int_0^(pi/4) (dx)/(1 + tanx)`

= `int_0^(pi/4) (dx)/(1 + sinx/cosx)`

= `int_0^(pi/4) (cos x dx)/(cosx + sinx)`

= `1/2 int_0^(pi/4) (2cosx)/(cosx + sinx) dx`

= `1/2 int_0^(pi/4) (cosx + sinx + cosx - sinx)/(cosx + sinx) dx`

= `1/2 [int_0^(pi/4) (cosx + sinx)/(cosx + sinx) dx + int_0^(pi/4) (cosx - sinx)/(cosx + sinx) dx]`

= `1/2 [int_0^(pi/4) 1dx + int_0^(pi/4) (cosx - sinx)/(cosx + sinx) dx]`

= `1/2 (I_1 + I_2)`

Where, I1 = `int_0^(pi/4) 1dx`

= `[x]_0^(pi/4) = pi/4`

And I2 = `int_0^(pi/4) (cosx - sinx)/(cosx + sinx) dx`

Let cosx + sinx = t

⇒ (–sinx + cosx)dx = dt

When x = 0, t = 1

And x = `pi/4`, t = `2/sqrt(2)`

∴ I2 = `int_1^(2/sqrt(2)) (dt)/t`

= `[logt]_1^(2/sqrt(2))`

= `log  2/sqrt(2) - log 1`

= `log  2/sqrt(2) - 0`

= `log2^(3/2)`

= `3/2 log 2`

∴ I = `1/2(I_1 + I_2)`

or I = `1/2(pi/4 + 3/2 log 2)`

shaalaa.com
  Is there an error in this question or solution?
2021-2022 (April) Term 2 - Delhi Set 1

RELATED QUESTIONS

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


Integrate the function in x sin 3x.


Integrate the function in `x^2e^x`.


Integrate the function in x sin-1 x.


Integrate the function in tan-1 x.


Integrate the function in (x2 + 1) log x.


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


Prove that:

`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`


Evaluate the following : `int x tan^-1 x .dx`


Evaluate the following : `int sin θ.log (cos θ).dθ`


Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`


Evaluate the following : `int cos(root(3)(x)).dx`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Integrate the following w.r.t.x : log (x2 + 1)


Integrate the following w.r.t.x : sec4x cosec2x


Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx


`int"e"^(4x - 3) "d"x` = ______ + c


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


Evaluate `int 1/(x(x - 1))  "d"x`


Evaluate the following:

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


Evaluate the following:

`int_0^pi x log sin x "d"x`


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


`int 1/sqrt(x^2 - 9) dx` = ______.


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


Solve: `int sqrt(4x^2 + 5)dx`


If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×