Advertisements
Advertisements
Question
Evaluate the following:
`int_0^pi x log sin x "d"x`
Solution
Let I = `int_0^pi x log sin x "d"x` ......(i)
= `int_0^pi (pi - x) log sin(pi - x) "d"x` ....`["Using" int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x)"d"x]`
I = `int_0^pi (pi - x) log sinx "d"x` ......(ii)
Adding (i) and (ii), we get
2I = `int_0^pi [(pi - x) log sin x + x log sinx]"d"x`
2I = `int_0^pi pilog sinx "d"x`
2I = `2oi int_0^(pi/2) log sinx "d"x` ......`[because int_0^"a" "f"(x) "d"x = 2 int_0^("a"/2) "f"(x) "d"x]`
∴ I = `pi int_0^(pi/2) log sinx "d"x` .....(iii)
I = `pi int_0^(pi/2) log sin (pi/2 - x) "d"x`
I = `pi int_0^(pi/2) log cos x "d"x` ......(iv)
On adding (iii) and (iv), we get
2I = `pi int_0^(pi/2) (log sinx + log cosx) "d"x`
2I = `pi int_0^(pi/2) log sin x cos x "d"x`
= `pi int_0^(pi/2) (log2 sin x cosx)/2 "d"x`
2I = `pi int_0^(pi/2) log sin 2x "d"x - pi int_0^(pi/2) log 2 "d"x`
Put 2x = t
⇒ 2 dx = dt
⇒ dx = `"dt"/2`
2I = `pi int_0^pi log sin "t" "dt" - pi * log 2 int_0^(pi/2) 1 "d"x` ....[Changing the limit]
2I = `"I" - pi * log 2[x]_0^(pi/2)` ....[From equation (iii)]
2I – I = `- pi^2/2 log 2`
So I = `pi^2/2 log (1/2)`
APPEARS IN
RELATED QUESTIONS
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x sin 3x.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int sin4x cos3x "d"x`
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int"e"^(4x - 3) "d"x` = ______ + c
`int "e"^x x/(x + 1)^2 "d"x`
∫ log x · (log x + 2) dx = ?
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
`int(1-x)^-2 dx` = ______
`int1/sqrt(x^2 - a^2) dx` = ______
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
Evaluate `int(1 + x + (x^2)/(2!))dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx