मराठी

Evaluate the following: d∫0πxlogsinxdx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int_0^pi x log sin x "d"x`

बेरीज

उत्तर

Let I = `int_0^pi x log sin x "d"x` ......(i)

= `int_0^pi (pi - x) log sin(pi - x) "d"x`  ....`["Using" int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)"d"x]`

I = `int_0^pi (pi - x) log sinx  "d"x`  ......(ii)

Adding (i) and (ii), we get

2I = `int_0^pi [(pi - x) log sin x + x log sinx]"d"x`

2I = `int_0^pi pilog sinx  "d"x`

2I = `2oi int_0^(pi/2) log sinx  "d"x`  ......`[because int_0^"a" "f"(x) "d"x = 2 int_0^("a"/2) "f"(x) "d"x]`

∴ I = `pi int_0^(pi/2) log sinx  "d"x`   .....(iii)

I = `pi int_0^(pi/2) log sin (pi/2 - x) "d"x`

I = `pi int_0^(pi/2) log cos x  "d"x`  ......(iv)

On adding (iii) and (iv), we get

2I = `pi int_0^(pi/2) (log sinx + log cosx)  "d"x`

2I = `pi int_0^(pi/2) log sin x cos x  "d"x`

= `pi int_0^(pi/2)  (log2 sin x cosx)/2  "d"x`

2I = `pi int_0^(pi/2) log sin 2x  "d"x - pi int_0^(pi/2) log 2  "d"x`

Put 2x = t

⇒ 2 dx = dt

⇒ dx = `"dt"/2`

2I = `pi int_0^pi  log sin "t"  "dt" - pi * log 2 int_0^(pi/2)  1 "d"x`  ....[Changing the limit]

2I = `"I" - pi * log 2[x]_0^(pi/2)` ....[From equation (iii)]

2I – I = `- pi^2/2 log 2`

So I = `pi^2/2 log (1/2)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 46 | पृष्ठ १६६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


Integrate the function in x log x.


Integrate the function in ex (sinx + cosx).


Evaluate the following: `int x.sin^-1 x.dx`


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following w.r.t.x : log (log x)+(log x)–2 


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Integrate the following w.r.t.x : e2x sin x cos x


Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


`int 1/(4x + 5x^(-11))  "d"x`


Choose the correct alternative:

`intx^(2)3^(x^3) "d"x` =


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


`int log x * [log ("e"x)]^-2` dx = ?


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


`int 1/sqrt(x^2 - a^2)dx` = ______.


Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.


Solution of the equation `xdy/dx=y log y` is ______


Evaluate the following.

`int x^3 e^(x^2) dx`


The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following.

`intx^3e^(x^2) dx`


Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×