Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_0^pi x log sin x "d"x`
उत्तर
Let I = `int_0^pi x log sin x "d"x` ......(i)
= `int_0^pi (pi - x) log sin(pi - x) "d"x` ....`["Using" int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x)"d"x]`
I = `int_0^pi (pi - x) log sinx "d"x` ......(ii)
Adding (i) and (ii), we get
2I = `int_0^pi [(pi - x) log sin x + x log sinx]"d"x`
2I = `int_0^pi pilog sinx "d"x`
2I = `2oi int_0^(pi/2) log sinx "d"x` ......`[because int_0^"a" "f"(x) "d"x = 2 int_0^("a"/2) "f"(x) "d"x]`
∴ I = `pi int_0^(pi/2) log sinx "d"x` .....(iii)
I = `pi int_0^(pi/2) log sin (pi/2 - x) "d"x`
I = `pi int_0^(pi/2) log cos x "d"x` ......(iv)
On adding (iii) and (iv), we get
2I = `pi int_0^(pi/2) (log sinx + log cosx) "d"x`
2I = `pi int_0^(pi/2) log sin x cos x "d"x`
= `pi int_0^(pi/2) (log2 sin x cosx)/2 "d"x`
2I = `pi int_0^(pi/2) log sin 2x "d"x - pi int_0^(pi/2) log 2 "d"x`
Put 2x = t
⇒ 2 dx = dt
⇒ dx = `"dt"/2`
2I = `pi int_0^pi log sin "t" "dt" - pi * log 2 int_0^(pi/2) 1 "d"x` ....[Changing the limit]
2I = `"I" - pi * log 2[x]_0^(pi/2)` ....[From equation (iii)]
2I – I = `- pi^2/2 log 2`
So I = `pi^2/2 log (1/2)`
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Integrate the function in x log x.
Integrate the function in ex (sinx + cosx).
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following w.r.t.x : log (log x)+(log x)–2
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Integrate the following w.r.t.x : e2x sin x cos x
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
`int 1/(4x + 5x^(-11)) "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
`int log x * [log ("e"x)]^-2` dx = ?
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
`int 1/sqrt(x^2 - a^2)dx` = ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Solution of the equation `xdy/dx=y log y` is ______
Evaluate the following.
`int x^3 e^(x^2) dx`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`intx^3e^(x^2) dx`
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`