Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_0^pi x log sin x "d"x`
उत्तर
Let I = `int_0^pi x log sin x "d"x` ......(i)
= `int_0^pi (pi - x) log sin(pi - x) "d"x` ....`["Using" int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x)"d"x]`
I = `int_0^pi (pi - x) log sinx "d"x` ......(ii)
Adding (i) and (ii), we get
2I = `int_0^pi [(pi - x) log sin x + x log sinx]"d"x`
2I = `int_0^pi pilog sinx "d"x`
2I = `2oi int_0^(pi/2) log sinx "d"x` ......`[because int_0^"a" "f"(x) "d"x = 2 int_0^("a"/2) "f"(x) "d"x]`
∴ I = `pi int_0^(pi/2) log sinx "d"x` .....(iii)
I = `pi int_0^(pi/2) log sin (pi/2 - x) "d"x`
I = `pi int_0^(pi/2) log cos x "d"x` ......(iv)
On adding (iii) and (iv), we get
2I = `pi int_0^(pi/2) (log sinx + log cosx) "d"x`
2I = `pi int_0^(pi/2) log sin x cos x "d"x`
= `pi int_0^(pi/2) (log2 sin x cosx)/2 "d"x`
2I = `pi int_0^(pi/2) log sin 2x "d"x - pi int_0^(pi/2) log 2 "d"x`
Put 2x = t
⇒ 2 dx = dt
⇒ dx = `"dt"/2`
2I = `pi int_0^pi log sin "t" "dt" - pi * log 2 int_0^(pi/2) 1 "d"x` ....[Changing the limit]
2I = `"I" - pi * log 2[x]_0^(pi/2)` ....[From equation (iii)]
2I – I = `- pi^2/2 log 2`
So I = `pi^2/2 log (1/2)`
APPEARS IN
संबंधित प्रश्न
Integrate the function in x sin-1 x.
Integrate the function in tan-1 x.
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
`int 1/x "d"x` = ______ + c
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
Evaluate `int 1/(x(x - 1)) "d"x`
∫ log x · (log x + 2) dx = ?
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate `int (1 + x + x^2/(2!))dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`