हिंदी

Evaluate the following: d∫0πxlogsinxdx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int_0^pi x log sin x "d"x`

योग

उत्तर

Let I = `int_0^pi x log sin x "d"x` ......(i)

= `int_0^pi (pi - x) log sin(pi - x) "d"x`  ....`["Using" int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)"d"x]`

I = `int_0^pi (pi - x) log sinx  "d"x`  ......(ii)

Adding (i) and (ii), we get

2I = `int_0^pi [(pi - x) log sin x + x log sinx]"d"x`

2I = `int_0^pi pilog sinx  "d"x`

2I = `2oi int_0^(pi/2) log sinx  "d"x`  ......`[because int_0^"a" "f"(x) "d"x = 2 int_0^("a"/2) "f"(x) "d"x]`

∴ I = `pi int_0^(pi/2) log sinx  "d"x`   .....(iii)

I = `pi int_0^(pi/2) log sin (pi/2 - x) "d"x`

I = `pi int_0^(pi/2) log cos x  "d"x`  ......(iv)

On adding (iii) and (iv), we get

2I = `pi int_0^(pi/2) (log sinx + log cosx)  "d"x`

2I = `pi int_0^(pi/2) log sin x cos x  "d"x`

= `pi int_0^(pi/2)  (log2 sin x cosx)/2  "d"x`

2I = `pi int_0^(pi/2) log sin 2x  "d"x - pi int_0^(pi/2) log 2  "d"x`

Put 2x = t

⇒ 2 dx = dt

⇒ dx = `"dt"/2`

2I = `pi int_0^pi  log sin "t"  "dt" - pi * log 2 int_0^(pi/2)  1 "d"x`  ....[Changing the limit]

2I = `"I" - pi * log 2[x]_0^(pi/2)` ....[From equation (iii)]

2I – I = `- pi^2/2 log 2`

So I = `pi^2/2 log (1/2)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise [पृष्ठ १६६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise | Q 46 | पृष्ठ १६६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Integrate the function in x sin-1 x.


Integrate the function in tan-1 x.


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t.x:

`e^(5x).[(5x.logx + 1)/x]`


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


Choose the correct options from the given alternatives :

`int (sin^m x)/(cos^(m+2)x)*dx` = 


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`


Evaluate the following.

`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`


`int 1/x  "d"x` = ______ + c


`int (x^2 + x - 6)/((x - 2)(x - 1))  "d"x` = x + ______ + c


Evaluate `int 1/(x(x - 1))  "d"x`


∫ log x · (log x + 2) dx = ?


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.


Evaluate: 

`int(1+logx)/(x(3+logx)(2+3logx))  dx`


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4))dx`


Evaluate the following.

`intx^3  e^(x^2) dx`


Evaluate the following.

`intx^3 e^(x^2) dx`


Evaluate `int (1 + x + x^2/(2!))dx`


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Evaluate the following.

`intx^3/sqrt(1+x^4)`dx


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×