Advertisements
Advertisements
प्रश्न
Integrate the function in tan-1 x.
उत्तर
Let `I = int tan^-1 x dx`
`= int tan^-1 x. 1 dx`
Put `u = tan^-1 x, v = 1`
`int uv dx = u int v dx - int ((du)/dx int v dx) dx`
`I= int tan^-1 x. 1`
`(tan^-1 x) int 1 dx - (d/dx (tan^-1 x) int dx) dx`
`= x tan^-1 x - int 1/(1 + x^2) . x dx`
`= x tan^-1 x - 1/2 int (2x)/(1 + x^2) dx`
Put 1 + x2 = t, and dx = dt
`= x tan^-1 x - 1/2 int dt/t`
`= x tan^-1 x - 1/2 log t + C`
`= x tan^1 - 1/2 log (1 + x^2) + C`
APPEARS IN
संबंधित प्रश्न
Integrate : sec3 x w. r. t. x.
Integrate the function in x sec2 x.
Integrate the function in x (log x)2.
Integrate the function in ex (sinx + cosx).
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int x.cos^3x.dx`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: `int "dx"/(5 - 16"x"^2)`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
Evaluate `int 1/(x log x) "d"x`
∫ log x · (log x + 2) dx = ?
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
`int 1/sqrt(x^2 - 9) dx` = ______.
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
`int 1/sqrt(x^2 - a^2)dx` = ______.
`int(logx)^2dx` equals ______.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
`int(1-x)^-2 dx` = ______
`int1/sqrt(x^2 - a^2) dx` = ______
Solution of the equation `xdy/dx=y log y` is ______
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
`int1/(x+sqrt(x)) dx` = ______
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int (logx)^2 dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`