हिंदी

Integrate the function in tan-1 x. - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the function in tan-1 x.

योग

उत्तर

Let `I = int tan^-1 x  dx`

`= int tan^-1 x. 1  dx`

Put `u = tan^-1 x, v = 1` 

`int uv  dx = u int v  dx - int ((du)/dx int v  dx)  dx`

`I= int tan^-1 x. 1`

`(tan^-1 x) int 1  dx - (d/dx (tan^-1 x) int dx) dx`

`= x tan^-1 x - int 1/(1 + x^2) . x  dx`

`= x tan^-1 x - 1/2 int (2x)/(1 + x^2)  dx`

Put 1 + x2 = t, and dx = dt

`= x tan^-1 x - 1/2 int dt/t`

`= x tan^-1 x - 1/2  log t + C`

`= x tan^1 - 1/2  log (1 + x^2) + C`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.6 [पृष्ठ ३२७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.6 | Q 13 | पृष्ठ ३२७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Integrate : sec3 x w. r. t. x.


Integrate the function in x sec2 x.


Integrate the function in x (log x)2.


Integrate the function in ex (sinx + cosx).


Integrate the function in `(xe^x)/(1+x)^2`.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


Evaluate the following : `int x^2.log x.dx`


Evaluate the following : `int x.sin^2x.dx`


Evaluate the following : `int x.cos^3x.dx`


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`


Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx


Evaluate: `int "dx"/(5 - 16"x"^2)`


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


Choose the correct alternative:

`intx^(2)3^(x^3) "d"x` =


Evaluate `int 1/(x log x)  "d"x`


∫ log x · (log x + 2) dx = ?


The value of `int "e"^(5x) (1/x - 1/(5x^2))  "d"x` is ______.


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


`int 1/sqrt(x^2 - 9) dx` = ______.


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


`int 1/sqrt(x^2 - a^2)dx` = ______.


`int(logx)^2dx` equals ______.


Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


`int(1-x)^-2 dx` = ______


`int1/sqrt(x^2 - a^2) dx` = ______


Solution of the equation `xdy/dx=y log y` is ______


`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`


`int1/(x+sqrt(x))  dx` = ______


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


`int(xe^x)/((1+x)^2)  dx` = ______


Evaluate:

`intcos^-1(sqrt(x))dx`


Evaluate:

`int (logx)^2 dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×