Advertisements
Advertisements
प्रश्न
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
उत्तर
I = `int e^(x^2) (x^5 + 2x^3)dx`
I = `int x^5 e^(x^2) dx + 2int x^3 e^(x^2) dx`
Applying integration by part in `int x^3e^(x^2) dx`
I = `int x^5 e^(x^2) dx + (2x^4)/4 e^(x^2) - 2int e^(x^2) 2x . x^4/4 dx`
= `int x^5e^(x^2) dx + (2x^4e^(x^2))/4 - 2int (x^5e^(x^2))/2dx`
= `(x^4e^(x^2))/2 + C`.
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Integrate the function in x sin-1 x.
Integrate the function in `(xe^x)/(1+x)^2`.
`intx^2 e^(x^3) dx` equals:
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int log(logx)/x.dx`
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
`int logx/(1 + logx)^2 "d"x`
∫ log x · (log x + 2) dx = ?
`int log x * [log ("e"x)]^-2` dx = ?
Solve: `int sqrt(4x^2 + 5)dx`
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Evaluate:
`int e^(ax)*cos(bx + c)dx`
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following:
`intx^3e^(x^2)dx`
Evaluate the following.
`intx^3e^(x^2) dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).