Advertisements
Advertisements
प्रश्न
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
उत्तर
`int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx = int_(-π//4)^(π//4) (2 cos^2 x - 1)/(2 cos^2 x)dx`
= `1/2 . 2 int_0^(π//4) (2 - sec^2 x)dx` ...[even function]
= `1/2 . 2[2x - tan x]_0^(π//4)`
= `π/2 - 1`
APPEARS IN
संबंधित प्रश्न
Evaluate : `intlogx/(1+logx)^2dx`
Evaluate : `intsec^nxtanxdx`
Evaluate `int_(-2)^2x^2/(1+5^x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
`int_2^3 x/(x^2 - 1)` dx = ______
`int_0^{pi/2} xsinx dx` = ______
`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
`int (dx)/(e^x + e^(-x))` is equal to ______.
Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`
If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to ______.
Evaluate: `int_0^π x/(1 + sinx)dx`.
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Solve.
`int_0^1e^(x^2)x^3dx`
Evaluate:
`int_0^6 |x + 3|dx`
Evaluate the following integral:
`int_0^1x(1 - x)^5dx`
Evaluate the following definite intergral:
`int_1^3logx dx`