हिंदी

Evaluate: ππ∫-π/4π/4cos2x1+cos2xdx. - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.

योग

उत्तर

`int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx = int_(-π//4)^(π//4) (2 cos^2 x - 1)/(2 cos^2 x)dx`

= `1/2 . 2 int_0^(π//4) (2 - sec^2 x)dx`  ...[even function]

= `1/2 . 2[2x - tan x]_0^(π//4)`

= `π/2 - 1`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Delhi Set 2

संबंधित प्रश्न

 
 

Evaluate : `intlogx/(1+logx)^2dx`

 
 

Evaluate : `intsec^nxtanxdx`


 
 

Evaluate `int_(-2)^2x^2/(1+5^x)dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (2log sin x - log sin 2x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^(2x) cos^5 xdx`


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x`


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


`int_2^3 x/(x^2 - 1)` dx = ______


`int_0^{pi/2} xsinx dx` = ______


`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.


If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


`int (dx)/(e^x + e^(-x))` is equal to ______.


Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`


If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.


Evaluate: `int_0^π 1/(5 + 4 cos x)dx`


If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.


`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.


Evaluate: `int_0^π x/(1 + sinx)dx`.


Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x))  dx`


Solve.

`int_0^1e^(x^2)x^3dx`


Evaluate:

`int_0^6 |x + 3|dx`


Evaluate the following integral:

`int_0^1x(1 - x)^5dx`


Evaluate the following definite intergral:

`int_1^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×