Advertisements
Advertisements
प्रश्न
Evaluate : `intsec^nxtanxdx`
उत्तर
`I=intsec^(n-1)xsecxtanx dx`
Let secx=t
`therefore secxtanx dx=dt`
`I=intt^(n-1)dt`
`=t^n/n+c`
`=sec^nx/n+C`
APPEARS IN
संबंधित प्रश्न
Evaluate : `intlogx/(1+logx)^2dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total revenue R is increasing.
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_{pi/6}^{pi/3} sin^2x dx` = ______
`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?
`int_(-1)^1 (x + x^3)/(9 - x^2) "d"x` = ______.
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:
The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2)) dx` is
`int_a^b f(x)dx` = ______.
If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.
`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.
`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following integrals:
`int_-9^9 x^3/(4 - x^3 ) dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`