हिंदी

Ndnn∫0π2sinnxdxsinnx+cosnx = ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.

रिक्त स्थान भरें

उत्तर

`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = `pi/4`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Solved Examples [पृष्ठ १६३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Solved Examples | Q 32 | पृष्ठ १६३

संबंधित प्रश्न

If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`

(A) 1

(B) 2

(C) –1

(D) –2


By using the properties of the definite integral, evaluate the integral:

`int_0^2 xsqrt(2 -x)dx`


`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]

If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


`int_0^1 "e"^(2x) "d"x` = ______


Evaluate `int_0^1 x(1 - x)^5  "d"x`


`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______ 


`int_0^9 1/(1 + sqrtx)` dx = ______ 


Which of the following is true?


`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.


`int_(-1)^1 (x + x^3)/(9 - x^2)  "d"x` = ______.


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:


Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`


`int_0^1 1/(2x + 5) dx` = ______.


Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


 `int_-9^9 x^3/(4-x^2) dx` =______


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×