Advertisements
Advertisements
प्रश्न
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
उत्तर
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = `pi/4`.
APPEARS IN
संबंधित प्रश्न
If `int_0^alpha3x^2dx=8` then the value of α is :
(a) 0
(b) -2
(c) 2
(d) ±2
If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`
(A) 1
(B) 2
(C) –1
(D) –2
By using the properties of the definite integral, evaluate the integral:
`int_0^2 xsqrt(2 -x)dx`
`∫_4^9 1/sqrtxdx=`_____
(A) 1
(B) –2
(C) 2
(D) –1
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
`int_0^1 "e"^(2x) "d"x` = ______
Evaluate `int_0^1 x(1 - x)^5 "d"x`
`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______
`int_0^9 1/(1 + sqrtx)` dx = ______
Which of the following is true?
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
`int_(-1)^1 (x + x^3)/(9 - x^2) "d"x` = ______.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
`int_0^1 1/(2x + 5) dx` = ______.
Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
`int_-9^9 x^3/(4-x^2) dx` =______
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2)dx`