Advertisements
Advertisements
प्रश्न
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
उत्तर
Let I = `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
= `int_(pi/6)^(pi/3) sqrt(cosx)/(sqrt(sinx) + sqrt(cos x)) dx` ......(i)
Using `int_a^b f(x) dx = int_a^b f(a + b - x) dx`
I = `int_(pi/6)^(pi/3) sqrt(cos(pi/6 + pi/3 - x))/(sqrt(sin(pi/6 + pi/3 - x)) + sqrt(cos(pi/6 + pi/3 - x)))`
I = `int_(pi/6)^(pi/3) sqrt(sinx)/(sqrt(cosx) + sqrt(sinx)) dx` ......(ii)
Adding (i) and (ii), we get
2I = `int_(pi/6)^(pi/3) sqrt(cosx)/(sqrt(sinx) + sqrt(cosx)) dx + int_(pi/6)^(pi/3) sqrt(sinx)/(sqrt(cosx) + sqrt(sinx)) dx`
2I = `int_(pi/6)^(pi/3) dx`
= `[x]_(pi/6)^(pi/3)`
= `pi/3 - pi/6`
= `pi/6`
Hence, I = `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)) = pi/12`
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`
Evaluate`int (1)/(x(3+log x))dx`
Evaluate : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x)) dx` = ______.
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
`int_0^{pi/2} log(tanx)dx` = ______
`int_{pi/6}^{pi/3} sin^2x dx` = ______
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
`int_0^pi x*sin x*cos^4x "d"x` = ______.
`int_0^9 1/(1 + sqrtx)` dx = ______
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
`int_0^1 "e"^(5logx) "d"x` = ______.
`int_(-1)^1 (x + x^3)/(9 - x^2) "d"x` = ______.
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
`int (dx)/(e^x + e^(-x))` is equal to ______.
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?
If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.
Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
`int_0^(π/4) x. sec^2 x dx` = ______.
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`