हिंदी

∫-55 x7x4+10 dx = ______. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.

विकल्प

  • 10

  • 5

  • 0

  • `1/5`

MCQ
रिक्त स्थान भरें

उत्तर

`int_(-5)^5  x^7/(x^4 + 10)  dx` = 0.

Explanation:

Let f(x) = `x^7/(x^4 + 10)`

∴ f(– x) = `(-x)^7/((-x)^4 + 10) = (-x^7)/(x^4 + 10)`

=  – f(x)

∵ f(– x) = – f(x)

∴ f(x) is an odd function

∴ `int_(-a)^a f(x).dx` = 0

⇒ `int_(-5)^5  x^7/(x^4 + 10)  dx` = 0 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (March) Set 1

APPEARS IN

संबंधित प्रश्न

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`

(A) 1

(B) 2

(C) –1

(D) –2


By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`


Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`


\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Evaluate  : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`


The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total  revenue R is increasing.


Find `dy/dx, if y = cos^-1 ( sin 5x)`


Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.


`int_1^2 1/(2x + 3)  dx` = ______


Evaluate `int_1^3 x^2*log x  "d"x`


Evaluate `int_0^1 x(1 - x)^5  "d"x`


The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.


`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


`int_-2^1 dx/(x^2 + 4x + 13)` = ______


`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`


`int_0^1 log(1/x - 1) "dx"` = ______.


The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______ 


`int_0^pi x sin^2x dx` = ______ 


`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.


`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


Evaluate the following:

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to ______.


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx


Evaluate: `int_(-1)^3 |x^3 - x|dx`


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.


If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.


The integral `int_0^2||x - 1| -x|dx` is equal to ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.


`int_0^(π/4) x. sec^2 x  dx` = ______.


`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.


Evaluate `int_0^(π//4) log (1 + tanx)dx`.


`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


Evaluate the following integral:

`int_0^1x (1 - x)^5 dx`


Evaluate the following integral:

`int_-9^9 x^3 / (4 - x^2) dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×