हिंदी

D∫-11x3+|x|+1x2+2|x|+1dx is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.

विकल्प

  • log 2

  • 2 log 2

  • `1/2 log 2`

  • 4 log 2

MCQ
रिक्त स्थान भरें

उत्तर

`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to 2 log 2.

Explanation:

Since I = `int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x`

= `int_(-1)^1 x^3/(x^2 + 2|x| + 1) + int_(-1)^1 (|x| + 1)/(x^2 + 2|x| + 1)"d"x`

= `0 + 2 int_0^1 (|x| + 1)/((|x| + 1)^2) "d"x`  ....[odd function + even function]

= `2 int_0^1 (x + 1)/(x + 1)^2  "d"x`

= `2 int_0^1 1/(x + 1)  "d"x`

= `2|log|x + 1|]_0^1`

= 2 log 2.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Solved Examples [पृष्ठ १६१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Solved Examples | Q 26 | पृष्ठ १६१

संबंधित प्रश्न

Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


By using the properties of the definite integral, evaluate the integral:

`int_2^8 |x - 5| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/4) log (1+ tan x) dx`


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total  revenue R is increasing.


Find `dy/dx, if y = cos^-1 ( sin 5x)`


Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`


`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?


`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?


`int_0^{pi/2} log(tanx)dx` = ______


`int_2^3 x/(x^2 - 1)` dx = ______


`int_0^{pi/2} cos^2x  dx` = ______ 


`int_(-1)^1 (x + x^3)/(9 - x^2)  "d"x` = ______.


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


`int (dx)/(e^x + e^(-x))` is equal to ______.


Evaluate: `int_(-1)^3 |x^3 - x|dx`


Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.


Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.


The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


`int_1^2 x logx  dx`= ______


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Evaluate the following definite intergral:

`int_1^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×