Advertisements
Advertisements
प्रश्न
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
विकल्प
log 2
2 log 2
`1/2 log 2`
4 log 2
उत्तर
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to 2 log 2.
Explanation:
Since I = `int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x`
= `int_(-1)^1 x^3/(x^2 + 2|x| + 1) + int_(-1)^1 (|x| + 1)/(x^2 + 2|x| + 1)"d"x`
= `0 + 2 int_0^1 (|x| + 1)/((|x| + 1)^2) "d"x` ....[odd function + even function]
= `2 int_0^1 (x + 1)/(x + 1)^2 "d"x`
= `2 int_0^1 1/(x + 1) "d"x`
= `2|log|x + 1|]_0^1`
= 2 log 2.
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_2^8 |x - 5| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total revenue R is increasing.
Find `dy/dx, if y = cos^-1 ( sin 5x)`
Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
`int_0^{pi/2} log(tanx)dx` = ______
`int_2^3 x/(x^2 - 1)` dx = ______
`int_0^{pi/2} cos^2x dx` = ______
`int_(-1)^1 (x + x^3)/(9 - x^2) "d"x` = ______.
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
`int (dx)/(e^x + e^(-x))` is equal to ______.
Evaluate: `int_(-1)^3 |x^3 - x|dx`
Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.
Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
`int_1^2 x logx dx`= ______
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Evaluate the following integrals:
`int_-9^9 x^3/(4 - x^3 ) dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following definite intergral:
`int_1^3logx dx`