हिंदी

Evaluate: int_(-a)^asqrt((a-x)/(a+x)) dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`

उत्तर

`int_(-a)^asqrt((a-x)/(a+x)) dx`

Let `I=int_(-a)^asqrt((a-x)/(a+x)) dx`

`=int_(-a)^asqrt(((a-x)(a-x))/((a+x)(a-x))) dx`

`=int_(-a)^a (a-x)/sqrt(a^2-x^2) dx`

`=int_(-a)^a a/sqrt(a^2-x^2) dx-int_(-a)^a x/sqrt(a^2-x^2) dx`

[but `a/sqrt(a^2-x^2)` is an is an even function and `x/sqrt(a^2-x^2)` is an odd function]

`=2a.[sin^-1(x/a)]_0^a`

`=2a.[sin^-1 1-sin^-1 0]`

`=2a[pi/2-0]`

`int_(-a)^asqrt((a-x)/(a+x)).dx=pia`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (March)

APPEARS IN

संबंधित प्रश्न

Evaluate : `intsec^nxtanxdx`


If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`

(A) 1

(B) 2

(C) –1

(D) –2


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^a  sqrtx/(sqrtx + sqrt(a-x))   dx`


Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


`int_(-7)^7 x^3/(x^2 + 7)  "d"x` = ______


Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x`


By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`.

Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`     ......(i)

Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`, we get

I = `int_2^5 ("(  )")/(sqrt(7 - x) + "(  )")  "d"x`   ......(ii)

Adding equations (i) and (ii), we get

2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x))  "d"x + (   )  "d"x`

2I = `int_2^5 (("(    )" + "(     )")/("(    )" + "(     )"))  "d"x`

2I = `square`

∴ I =  `square`


`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?


`int_2^3 x/(x^2 - 1)` dx = ______


`int_0^1 x tan^-1x  dx` = ______ 


`int_(-1)^1 (x + x^3)/(9 - x^2)  "d"x` = ______.


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


`int_(-2)^2 |x cos pix| "d"x` is equal to ______.


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`


Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`


`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.


If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.


If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.


`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.


`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.


`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.


The value of `int_0^(π/4) (sin 2x)dx` is ______.


Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.


Evaluate the following definite integral:

`int_4^9 1/sqrt"x" "dx"`


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Evaluate the following integral:

`int_-9^9 x^3 / (4 - x^2) dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Solve.

`int_0^1e^(x^2)x^3dx`


Evaluate the following integral:

`int_0^1x(1 - x)^5dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×