Advertisements
Advertisements
Question
Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`
Solution
`int_(-a)^asqrt((a-x)/(a+x)) dx`
Let `I=int_(-a)^asqrt((a-x)/(a+x)) dx`
`=int_(-a)^asqrt(((a-x)(a-x))/((a+x)(a-x))) dx`
`=int_(-a)^a (a-x)/sqrt(a^2-x^2) dx`
`=int_(-a)^a a/sqrt(a^2-x^2) dx-int_(-a)^a x/sqrt(a^2-x^2) dx`
[but `a/sqrt(a^2-x^2)` is an is an even function and `x/sqrt(a^2-x^2)` is an odd function]
`=2a.[sin^-1(x/a)]_0^a`
`=2a.[sin^-1 1-sin^-1 0]`
`=2a[pi/2-0]`
`int_(-a)^asqrt((a-x)/(a+x)).dx=pia`
APPEARS IN
RELATED QUESTIONS
Evaluate `int_(-2)^2x^2/(1+5^x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_2^8 |x - 5| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
Evaluate`int (1)/(x(3+log x))dx`
Find `dy/dx, if y = cos^-1 ( sin 5x)`
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x)) dx` = ______.
`int_1^2 1/(2x + 3) dx` = ______
`int_(-7)^7 x^3/(x^2 + 7) "d"x` = ______
`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_0^pi x*sin x*cos^4x "d"x` = ______.
Which of the following is true?
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
Evaluate the following:
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
`int (dx)/(e^x + e^(-x))` is equal to ______.
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
`int_0^1|3x - 1|dx` equals ______.
With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x dx` is ______.
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Evaluate the following integral:
`int_-9^9 x^3/(4 - x^2) dx`
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Evaluate:
`int_0^6 |x + 3|dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`