Advertisements
Advertisements
Question
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
Solution
Let `I = int_0^pi (x dx)/ (1 + sin x)`
`I = int_0^pi (pi - x)/ (1 + sin (pi-x)) dx` `...[∵ int_0^a f (x) dx = int_0^a f (a - x) dx]`
`= int_0^pi (pi - x)/ (1 + sin x) dx`
Adding (i) and (ii), we get
`2 I = int_0^pi (x + pi - x)/ (1 + sin x) dx`
`= pi int_0^pi 1/ (1 + sin x) dx`
`= pi int_0^pi (1 - sin x)/ (1 - sin^2 x) dx`
`= pi int_0^pi (1 - sin x)/(cos^2 x) dx`
`= pi int_0^pi (sec^2 x - tan x sec x) dx`
`= pi [tan x - sec x]_0^pi`
= π [(tan π - sec π) - (tan0 - sec0)]
= π [(0 - (-1)) - (0 - 1)]
= 2π
Hence, I = π
APPEARS IN
RELATED QUESTIONS
Evaluate : `intsec^nxtanxdx`
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
Evaluate`int (1)/(x(3+log x))dx`
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
`int_(-7)^7 x^3/(x^2 + 7) "d"x` = ______
Evaluate `int_1^3 x^2*log x "d"x`
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
Which of the following is true?
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
`int (dx)/(e^x + e^(-x))` is equal to ______.
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
Evaluate the following definite integral:
`int_4^9 1/sqrt"x" "dx"`
Solve the following.
`int_1^3 x^2 logx dx`
`int_0^(2a)f(x)/(f(x)+f(2a-x)) dx` = ______
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following integral:
`int_0^1x(1 - x)^5dx`