English

By using the properties of the definite integral, evaluate the integral: ∫0πx dx1+sinx - Mathematics

Advertisements
Advertisements

Question

By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`

Sum

Solution

Let `I = int_0^pi (x  dx)/ (1 + sin x)`

`I = int_0^pi (pi - x)/ (1 + sin (pi-x)) dx`           `...[∵ int_0^a f (x) dx = int_0^a f (a - x) dx]`

`= int_0^pi (pi - x)/ (1 + sin x)  dx`

Adding (i) and (ii), we get

`2 I = int_0^pi (x + pi - x)/ (1 + sin x)  dx`

`= pi int_0^pi 1/ (1 +  sin x)  dx`

`= pi int_0^pi (1 - sin x)/ (1 - sin^2 x)  dx`

`= pi int_0^pi (1 - sin x)/(cos^2 x) dx`

`= pi int_0^pi (sec^2 x - tan x sec x) dx`

`= pi [tan x - sec x]_0^pi`

= π [(tan π - sec π) - (tan0 - sec0)]

= π [(0 - (-1)) - (0 - 1)]

= 2π

Hence, I = π

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.11 [Page 347]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.11 | Q 12 | Page 347

RELATED QUESTIONS

Evaluate : `intsec^nxtanxdx`


By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


Evaluate`int (1)/(x(3+log x))dx` 


Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


`int_(-7)^7 x^3/(x^2 + 7)  "d"x` = ______


Evaluate `int_1^3 x^2*log x  "d"x`


`int (cos x + x sin x)/(x(x + cos x))`dx = ?


Which of the following is true?


Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.


If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.


`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.


`int (dx)/(e^x + e^(-x))` is equal to ______.


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.


If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.


Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`


Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


Evaluate the following definite integral:

`int_4^9 1/sqrt"x" "dx"`


Solve the following.

`int_1^3 x^2 logx  dx`


`int_0^(2a)f(x)/(f(x)+f(2a-x))  dx` = ______


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Evaluate the following integral:

`int_0^1x(1 - x)^5dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×