English

Bcacfd∫a+cb+cf(x)dx is equal to ______. - Mathematics

Advertisements
Advertisements

Question

`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.

Options

  • `int_"a"^"b" "f"(x - "c")"d"x`

  • `int_"a"^"b" "f"(x + "c")"d"x`

  • `int_"a"^"b" "f"(x)"d"x`

  • `int_("a" - "c")^("b" - "c") "f"(x)"d"x`

MCQ
Fill in the Blanks

Solution

`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to `int_"a"^"b" "f"(x + "c")"d"x`.

Explanation:

Since by putting x = t + c, we get

I = `int_"a"^"b" "f"("c" + "t")"dt"`

= `int_"a"^"b" "f"(x + "c")"d"x`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Solved Examples [Page 160]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Solved Examples | Q 23 | Page 160

RELATED QUESTIONS

Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`


Evaluate : `intsec^nxtanxdx`


If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`

(A) 1

(B) 2

(C) –1

(D) –2


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 


By using the properties of the definite integral, evaluate the integral:

`int_0^2 xsqrt(2 -x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^(2x) cos^5 xdx`


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total  revenue R is increasing.


Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =


`int_0^1 "e"^(2x) "d"x` = ______


`int_(-7)^7 x^3/(x^2 + 7)  "d"x` = ______


Evaluate `int_0^1 x(1 - x)^5  "d"x`


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


`int_0^1 (1 - x)^5`dx = ______.


`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______ 


`int_0^9 1/(1 + sqrtx)` dx = ______ 


The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))  dx` is


`int_0^1 1/(2x + 5) dx` = ______.


If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.


Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


The value of `int_0^(π/4) (sin 2x)dx` is ______.


`int_1^2 x logx  dx`= ______


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Evaluate the following definite integral:

`int_-2^3(1)/(x + 5)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×