Advertisements
Advertisements
Question
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
Options
`int_"a"^"b" "f"(x - "c")"d"x`
`int_"a"^"b" "f"(x + "c")"d"x`
`int_"a"^"b" "f"(x)"d"x`
`int_("a" - "c")^("b" - "c") "f"(x)"d"x`
Solution
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to `int_"a"^"b" "f"(x + "c")"d"x`.
Explanation:
Since by putting x = t + c, we get
I = `int_"a"^"b" "f"("c" + "t")"dt"`
= `int_"a"^"b" "f"(x + "c")"d"x`.
APPEARS IN
RELATED QUESTIONS
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
Evaluate : `intsec^nxtanxdx`
If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`
(A) 1
(B) 2
(C) –1
(D) –2
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^2 xsqrt(2 -x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total revenue R is increasing.
Choose the correct alternative:
`int_(-9)^9 x^3/(4 - x^2) "d"x` =
`int_0^1 "e"^(2x) "d"x` = ______
`int_(-7)^7 x^3/(x^2 + 7) "d"x` = ______
Evaluate `int_0^1 x(1 - x)^5 "d"x`
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
`int_0^1 (1 - x)^5`dx = ______.
`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx =` ______.
The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______
`int_0^9 1/(1 + sqrtx)` dx = ______
The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2)) dx` is
`int_0^1 1/(2x + 5) dx` = ______.
If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.
Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
The value of `int_0^(π/4) (sin 2x)dx` is ______.
`int_1^2 x logx dx`= ______
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`