Advertisements
Advertisements
Question
By using the properties of the definite integral, evaluate the integral:
`int_0^2 xsqrt(2 -x)dx`
Solution
Let `I = int_0^2 x sqrt (2 - x) dx`
Put 2 - x = t
⇒ dx = dt
When x = 0, t = 2
and x = 2, t = 0
∵ `I = - int_2^0 (2 - t) sqrtt dt`
`= int_0^2 (2t^(1/2) - t^(3/2)) dt`
`= [(2t^(3/2))/(3/2) - t^(5/2)/(5/2)]_0^2` `...[∵ - int_a^0 f (x) dx = int_0^a f (x) dx]`
`= [4/3 t^(3/2) - 2/5 t^(5/2)]_0^2`
`= 4/3 (2)^(3/2) - 2/5 (2)^(5/2)`
`= 4/3 xx 2 sqrt2 - 2/5 xx 4 sqrt2`
`= (8sqrt2)/3 - (8 sqrt 2)/5`
`= (16 sqrt2)/15`
APPEARS IN
RELATED QUESTIONS
Evaluate `int_(-2)^2x^2/(1+5^x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_(-5)^5 | x + 2| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.
`∫_4^9 1/sqrtxdx=`_____
(A) 1
(B) –2
(C) 2
(D) –1
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Evaluate`int (1)/(x(3+log x))dx`
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
`int_0^4 1/(1 + sqrtx)`dx = ______.
`int_0^{pi/2} xsinx dx` = ______
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx =` ______.
`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
Evaluate:
`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
`int_-9^9 x^3/(4-x^2) dx` =______
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following integral:
`int_0^1 x (1 - x)^5 dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`