English

By using the properties of the definite integral, evaluate the integral: ∫02x2-xdx - Mathematics

Advertisements
Advertisements

Question

By using the properties of the definite integral, evaluate the integral:

`int_0^2 xsqrt(2 -x)dx`

Sum

Solution

Let `I = int_0^2 x sqrt (2 - x)  dx`

Put 2 - x = t

⇒ dx = dt

When x = 0, t = 2

and x = 2, t =  0

∵ `I = - int_2^0 (2 - t) sqrtt  dt`

`= int_0^2 (2t^(1/2) - t^(3/2)) dt`

`= [(2t^(3/2))/(3/2) - t^(5/2)/(5/2)]_0^2`     `...[∵ - int_a^0 f (x) dx = int_0^a f (x) dx]`

`= [4/3 t^(3/2) - 2/5 t^(5/2)]_0^2`

`= 4/3 (2)^(3/2) - 2/5 (2)^(5/2)`

`= 4/3 xx 2 sqrt2 - 2/5 xx 4 sqrt2`

`= (8sqrt2)/3 - (8 sqrt 2)/5`

`= (16 sqrt2)/15`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.11 [Page 347]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.11 | Q 9 | Page 347

RELATED QUESTIONS

 
 

Evaluate `int_(-2)^2x^2/(1+5^x)dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) cos^2 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


By using the properties of the definite integral, evaluate the integral:

`int_(-5)^5 | x + 2| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (2log sin x - log sin 2x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi log(1+ cos x) dx`


`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.


`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Evaluate`int (1)/(x(3+log x))dx` 


Evaluate : `int _0^(pi/2) "sin"^ 2  "x"  "dx"`


Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`


Find : `int_  (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.


`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?


`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?


`int_0^4 1/(1 + sqrtx)`dx = ______.


`int_0^{pi/2} xsinx dx` = ______


If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.


`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.


Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to ______.


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


Evaluate:

`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`


Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.


Evaluate: `int_0^π 1/(5 + 4 cos x)dx`


`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.


Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x))  dx`


 `int_-9^9 x^3/(4-x^2) dx` =______


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Evaluate the following integral:

`int_0^1 x (1 - x)^5 dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×