English

∫-π2π2(x3+xcosx+tan5x+1)dx is ______. - Mathematics

Advertisements
Advertisements

Question

`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.

Options

  • 0

  • 2

  • π

  • 1

MCQ
Fill in the Blanks

Solution

`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is π.

Explanation:

Let `int_(-pi/2)^(pi/2) (x^3 + x  cos x + tan^5 x + 1)`  dx

`int_(-pi/2)^(pi/2) (x^3 + x  cos x + tan^5 x) dx + int_((-pi)/2)^(pi/2) 1* dx`

Because `(x^3 + x cos x + tan^5 x)` is an equivalent function.

Hence, `int_(-pi//2)^(pi//2) (x^3 + x  cos x + tan^5 x) dx = 0`

`=> I = 0 + [x]_(-pi/2)^(pi/2)`

`= pi/2 - (- pi/2)`

`= pi/2 + pi/2 = pi`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.11 [Page 347]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.11 | Q 20 | Page 347

RELATED QUESTIONS

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`


Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) cos^2 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^(2x) cos^5 xdx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx`  if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]

Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Evaluate`int (1)/(x(3+log x))dx` 


Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?


`int_2^3 x/(x^2 - 1)` dx = ______


`int_-1^1x^2/(1+x^2)  dx=` ______.


`int_0^pi x*sin x*cos^4x  "d"x` = ______.


`int_0^9 1/(1 + sqrtx)` dx = ______ 


If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.


`int_(-2)^2 |x cos pix| "d"x` is equal to ______.


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


`int (dx)/(e^x + e^(-x))` is equal to ______.


Evaluate: `int_(-1)^3 |x^3 - x|dx`


Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`


`int_4^9 1/sqrt(x)dx` = ______.


If f(x) = `{{:(x^2",", "where"  0 ≤ x < 1),(sqrt(x)",", "when"  1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


Evaluate `int_0^(π//4) log (1 + tanx)dx`.


Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Solve the following.

`int_0^1 e^(x^2) x^3dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×