English

The value of ∫0π2log (4+3sinx4+3cosx) dx is ______. - Mathematics

Advertisements
Advertisements

Question

The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.

Options

  • 2

  • `3/4`

  • 0

  • - 2

MCQ
Fill in the Blanks

Solution

The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is 0.

Explanation:

Let I `= int_0^(pi//2)  log  ((4 + 3 sin x)/(4 + 3 cos x))  "dx"`

Also, `I = int_0^(pi/2) log [(4+3 sin (pi/2 - x))/(4 + 3 cos (pi/2 - x))]  dx`

`[∵ int_0^a f (x) dx = int_0^a f (a - x) dx]`

⇒ ` I = int_0^(pi/2) log [(4+3 cos x)/(4+3 sin x)] dx`

⇒ `I = - int_0^(pi/2) log [(4+3sinx)/(4+3cosx)] dx`

⇒  I = -I

⇒  2I = 0

⇒  I = 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.11 [Page 347]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.11 | Q 21 | Page 347

RELATED QUESTIONS

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 


By using the properties of the definite integral, evaluate the integral:

`int_(-5)^5 | x + 2| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^2 xsqrt(2 -x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


`int_"a"^"b" "f"(x)  "d"x` = ______


`int_(-7)^7 x^3/(x^2 + 7)  "d"x` = ______


State whether the following statement is True or False:

`int_(-5)^5 x/(x^2 + 7)  "d"x` = 10


Evaluate `int_1^3 x^2*log x  "d"x`


`int_0^{pi/2} log(tanx)dx` = ______


`int_0^4 1/(1 + sqrtx)`dx = ______.


If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.


`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?


`int_-2^1 dx/(x^2 + 4x + 13)` = ______


`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.


`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


Evaluate the following:

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to ______.


If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:


The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))  dx` is


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


Evaluate: `int_(-1)^3 |x^3 - x|dx`


`int_0^1 1/(2x + 5) dx` = ______.


`int_a^b f(x)dx` = ______.


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?


If f(x) = `{{:(x^2",", "where"  0 ≤ x < 1),(sqrt(x)",", "when"  1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.


What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?


`int_0^(π/4) x. sec^2 x  dx` = ______.


Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Solve the following.

`int_0^1 e^(x^2) x^3dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×