Advertisements
Advertisements
Question
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
Options
2
`3/4`
0
- 2
Solution
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is 0.
Explanation:
Let I `= int_0^(pi//2) log ((4 + 3 sin x)/(4 + 3 cos x)) "dx"`
Also, `I = int_0^(pi/2) log [(4+3 sin (pi/2 - x))/(4 + 3 cos (pi/2 - x))] dx`
`[∵ int_0^a f (x) dx = int_0^a f (a - x) dx]`
⇒ ` I = int_0^(pi/2) log [(4+3 cos x)/(4+3 sin x)] dx`
⇒ `I = - int_0^(pi/2) log [(4+3sinx)/(4+3cosx)] dx`
⇒ I = -I
⇒ 2I = 0
⇒ I = 0
APPEARS IN
RELATED QUESTIONS
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_(-5)^5 | x + 2| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^2 xsqrt(2 -x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
`int_"a"^"b" "f"(x) "d"x` = ______
`int_(-7)^7 x^3/(x^2 + 7) "d"x` = ______
State whether the following statement is True or False:
`int_(-5)^5 x/(x^2 + 7) "d"x` = 10
Evaluate `int_1^3 x^2*log x "d"x`
`int_0^{pi/2} log(tanx)dx` = ______
`int_0^4 1/(1 + sqrtx)`dx = ______.
If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
Evaluate the following:
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:
The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2)) dx` is
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
Evaluate: `int_(-1)^3 |x^3 - x|dx`
`int_0^1 1/(2x + 5) dx` = ______.
`int_a^b f(x)dx` = ______.
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?
If f(x) = `{{:(x^2",", "where" 0 ≤ x < 1),(sqrt(x)",", "when" 1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.
What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?
`int_0^(π/4) x. sec^2 x dx` = ______.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Evaluate the following integrals:
`int_-9^9 x^3/(4 - x^3 ) dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`