Advertisements
Advertisements
Question
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
Options
`2sqrt(2)`
`2(sqrt(2) + 1)`
2
`2(sqrt(2) - 1)`
Solution
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to `2(sqrt(2) - 1)`.
Explanation:
Let I = `int_0^(pi/2) sqrt(1 - sin2x) "d"x`
= `int_0^(pi/2) sqrt((sin^2x + cos^2x - 2 sinx cosx)) "d"x`
= `int_0^(pi/2) sqrt((sinx - cosx)^2) "d"x`
= `int_0^(pi/2) +- (sinx - cosx) "d"x`
= `int_0^(pi/4) - (sin x - cosx) "d"x + int_(pi/4)^(pi/2) (sinx - cosx) "dx`
= `int_0^(pi/4) (cosx - sinx) "d"x + int_(pi/4)^(pi/2) (sinx - cosx) "d"x`
= `[sinx + cosx]_0^(pi/4) + [- cosx - sinx]_(pi/4)^(pi/2)`
= `[(sin pi/4 + cos pi/4) - (sin0 - cos0)] - [(cos pi/2 + sin pi/2) - (cos pi/4 + sin pi/4)]`
= `[(1/sqrt(2) + 1/sqrt(2)) - (+ 1)] - [(0 + 1) - (1/sqrt(2) + 1/sqrt(2))]`
= `(2/sqrt(2) - 1) - (1 - 2/sqrt(2))`
= `2/sqrt(2) - 1 -1 + 2/(sqrt(2))`
= `4/sqrt(2) - 2`
= `2sqrt(2) - 2`
= `2(sqrt(2) - 1)`.
APPEARS IN
RELATED QUESTIONS
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
Evaluate : `intsec^nxtanxdx`
By using the properties of the definite integral, evaluate the integral:
`int_2^8 |x - 5| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Evaluate : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`
Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`
Choose the correct alternative:
`int_(-9)^9 x^3/(4 - x^2) "d"x` =
Evaluate `int_1^3 x^2*log x "d"x`
Evaluate `int_0^1 x(1 - x)^5 "d"x`
f(x) = `{:{(x^3/k; 0 ≤ x ≤ 2), (0; "otherwise"):}` is a p.d.f. of X. The value of k is ______
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2)) dx` is
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.
`int_0^1|3x - 1|dx` equals ______.
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
`int_1^2 x logx dx`= ______
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2)dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`
Solve.
`int_0^1e^(x^2)x^3dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_1^3logx dx`