English

D∫0π21-sin2x dx is equal to ______. - Mathematics

Advertisements
Advertisements

Question

`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to ______.

Options

  • `2sqrt(2)`

  • `2(sqrt(2) + 1)`

  • 2

  • `2(sqrt(2) - 1)`

MCQ
Fill in the Blanks

Solution

`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to `2(sqrt(2) - 1)`.

Explanation:

Let I = `int_0^(pi/2) sqrt(1 - sin2x)  "d"x`

= `int_0^(pi/2) sqrt((sin^2x + cos^2x - 2 sinx cosx))  "d"x`

= `int_0^(pi/2) sqrt((sinx - cosx)^2)  "d"x`

= `int_0^(pi/2) +- (sinx - cosx)  "d"x`

= `int_0^(pi/4) - (sin x - cosx)  "d"x + int_(pi/4)^(pi/2) (sinx - cosx)  "dx`

= `int_0^(pi/4) (cosx - sinx)  "d"x + int_(pi/4)^(pi/2) (sinx - cosx)  "d"x`

= `[sinx + cosx]_0^(pi/4) + [- cosx - sinx]_(pi/4)^(pi/2)`

= `[(sin  pi/4 + cos  pi/4) - (sin0 - cos0)] - [(cos  pi/2 + sin  pi/2) - (cos  pi/4 + sin  pi/4)]`

= `[(1/sqrt(2) + 1/sqrt(2)) - (+ 1)] - [(0 + 1) - (1/sqrt(2) + 1/sqrt(2))]`

= `(2/sqrt(2) - 1) - (1 - 2/sqrt(2))`

= `2/sqrt(2) - 1 -1 + 2/(sqrt(2))`

= `4/sqrt(2) - 2`

= `2sqrt(2) - 2`

= `2(sqrt(2) - 1)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise [Page 169]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Exercise | Q 58 | Page 169

RELATED QUESTIONS

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


Evaluate : `intsec^nxtanxdx`


By using the properties of the definite integral, evaluate the integral:

`int_2^8 |x - 5| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/4) log (1+ tan x) dx`


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Evaluate  : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`


Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`


Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =


Evaluate `int_1^3 x^2*log x  "d"x`


Evaluate `int_0^1 x(1 - x)^5  "d"x`


f(x) =  `{:{(x^3/k;       0 ≤ x ≤ 2), (0;     "otherwise"):}` is a p.d.f. of X. The value of k is ______


If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))  dx` is


`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.


Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.


`int_0^1|3x - 1|dx` equals ______.


The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


Evaluate `int_0^(π//4) log (1 + tanx)dx`.


`int_1^2 x logx  dx`= ______


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2)dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Solve.

`int_0^1e^(x^2)x^3dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite intergral:

`int_1^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×