English

Ed∫0π2 cosxesinx dx is equal to ______. - Mathematics

Advertisements
Advertisements

Question

`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.

Fill in the Blanks

Solution

`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to e – 1.

Explanation:

Let I = `int_0^(pi/2)  cos x "e"^(sinx)  "d"x` 

Put sin x = t

⇒ cos x "d"x` = dt

∴ I = `int_0^1 "e"^"t"  "dt"`

= `["e"^"t"]_0^1`

= `"e"^1 - "e"^0`

= e – 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise [Page 169]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Exercise | Q 59 | Page 169

RELATED QUESTIONS

If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`


Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`


Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`


Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =


By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`.

Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`     ......(i)

Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`, we get

I = `int_2^5 ("(  )")/(sqrt(7 - x) + "(  )")  "d"x`   ......(ii)

Adding equations (i) and (ii), we get

2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x))  "d"x + (   )  "d"x`

2I = `int_2^5 (("(    )" + "(     )")/("(    )" + "(     )"))  "d"x`

2I = `square`

∴ I =  `square`


`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______


`int_0^1 (1 - x)^5`dx = ______.


`int_-2^1 dx/(x^2 + 4x + 13)` = ______


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______ 


`int_0^9 1/(1 + sqrtx)` dx = ______ 


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`


`int_0^1 1/(2x + 5) dx` = ______.


`int_a^b f(x)dx` = ______.


`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.


`int_4^9 1/sqrt(x)dx` = ______.


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.


`int_0^(π/4) x. sec^2 x  dx` = ______.


Evaluate `int_-1^1 |x^4 - x|dx`.


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x))  dx`


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following definite integral:

`int_-2^3(1)/(x + 5)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×