Advertisements
Advertisements
Question
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
Solution
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to e – 1.
Explanation:
Let I = `int_0^(pi/2) cos x "e"^(sinx) "d"x`
Put sin x = t
⇒ cos x "d"x` = dt
∴ I = `int_0^1 "e"^"t" "dt"`
= `["e"^"t"]_0^1`
= `"e"^1 - "e"^0`
= e – 1
APPEARS IN
RELATED QUESTIONS
If `int_0^alpha3x^2dx=8` then the value of α is :
(a) 0
(b) -2
(c) 2
(d) ±2
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`
Choose the correct alternative:
`int_(-9)^9 x^3/(4 - x^2) "d"x` =
By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x`.
Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x` ......(i)
Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`, we get
I = `int_2^5 ("( )")/(sqrt(7 - x) + "( )") "d"x` ......(ii)
Adding equations (i) and (ii), we get
2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x)) "d"x + ( ) "d"x`
2I = `int_2^5 (("( )" + "( )")/("( )" + "( )")) "d"x`
2I = `square`
∴ I = `square`
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
`int_0^1 (1 - x)^5`dx = ______.
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______
`int_0^9 1/(1 + sqrtx)` dx = ______
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`
`int_0^1 1/(2x + 5) dx` = ______.
`int_a^b f(x)dx` = ______.
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
`int_4^9 1/sqrt(x)dx` = ______.
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
`int_0^(π/4) x. sec^2 x dx` = ______.
Evaluate `int_-1^1 |x^4 - x|dx`.
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Evaluate: `int_-1^1 x^17.cos^4x dx`
Evaluate the following integrals:
`int_-9^9 x^3/(4 - x^3 ) dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`