English

Evaluate `Integration E^X [(Cosx - Sin X)/Sin^2 X]Dx` - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`

Solution

`I = inte^x [cosx/sin^2x - sinx/sin^2x]dx`

`= int e^x[(cotx.cosecx, -cosecx),(f'(x), f(x))]`

∵ `int e^x[f(x) + f'(x)]dx  = e^x f(x) + C`

`:. I = -e^x.cosec x + C`

shaalaa.com
  Is there an error in this question or solution?
2017-2018 (March)

APPEARS IN

RELATED QUESTIONS

Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`


If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`

(A) 1

(B) 2

(C) –1

(D) –2


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (2log sin x - log sin 2x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


Find : `int_  (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


`int (cos x + x sin x)/(x(x + cos x))`dx = ?


`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?


`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.


The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______ 


`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.


Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`


`int_(-2)^2 |x cos pix| "d"x` is equal to ______.


`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`


`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.


The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.


The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.


`int_0^1|3x - 1|dx` equals ______.


`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


If f(x) = `{{:(x^2",", "where"  0 ≤ x < 1),(sqrt(x)",", "when"  1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.


`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.


Evaluate `int_-1^1 |x^4 - x|dx`.


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate the following integral:

`int_0^1x (1 - x)^5 dx`


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×