Advertisements
Advertisements
Question
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Solution
\[I = \int\left( 3x - 2 \right)\sqrt{x^2 + x + 1}dx\]
\[\text { Let }3x - 2 = a(2x + 1) + b\]
\[ \Rightarrow a = \frac{3}{2} \text { and } b = \frac{- 7}{2}\]
\[\text { So,} I = \frac{3}{2}\int\left( 2x + 1 \right)\sqrt{x^2 + x + 1}dx - \frac{7}{2}\int\sqrt{x^2 + x + 1}dx\]
\[\text { Let } I = \frac{3}{2} I_1 - \frac{7}{2} I_2 \ldots\left( 1 \right)\]
\[\text{ Here }, I_1 = \int\left( 2x + 1 \right)\sqrt{x^2 + x + 1}dx \text { and } I_2 = \int\sqrt{x^2 + x + 1}dx\]
\[\text { Now }, I_1 = \int\left( 2x + 1 \right)\sqrt{x^2 + x + 1}dx\]
\[ \text { Let } x^2 + x + 1 = t\]
\[ \Rightarrow \left( 2x + 1 \right)dx = dt\]
\[\text { So }, I_1 = \int\sqrt{t} dt = \frac{2}{3} t^\frac{3}{2} = \frac{2}{3}( x^2 + x + 1 )^\frac{3}{2} + c_1 \ldots\left( 2 \right)\]
\[\text { And } I_2 = \int\sqrt{x^2 + x + 1}dx = \int\sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}dx \]
\[ = \frac{x + \frac{1}{2}}{2}\sqrt{x^2 + x + 1} + \frac{3}{8}\log\left| x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right| + c_2 \ldots\left( 3 \right)\]
By putting the values of equation (2) and equation (3) in equation (1), we get:
\[I = \left( x^2 + x + 1 \right)^\frac{3}{2} - \frac{7}{2}\left[ \left( \frac{2x + 1}{4} \right)\sqrt{x^2 + x + 1} + \frac{3}{8}\log\left| \left( x + \frac{1}{2} \right) + \sqrt{x^2 + x + 1} \right| \right] + c\]
APPEARS IN
RELATED QUESTIONS
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?
`int_0^1 x tan^-1x dx` = ______
`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
`int_0^pi x*sin x*cos^4x "d"x` = ______.
Evaluate the following:
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)
`int (dx)/(e^x + e^(-x))` is equal to ______.
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
Evaluate: `int_(-1)^3 |x^3 - x|dx`
Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.
`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.
Evaluate the following definite integral:
`int_4^9 1/sqrt"x" "dx"`
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Evaluate the following integrals:
`int_-9^9 x^3/(4 - x^3 ) dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`