Advertisements
Advertisements
Question
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.
Options
1
– 1
2
– 2
Solution
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to – 2.
Explanation:
`int_-1^1 |x - 2|/(x - 2) dx`; x ≠ 2 = `[-x]_-1^1`
= – [1 + 1]
= – 2.
RELATED QUESTIONS
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
Evaluate `int_1^3 x^2*log x "d"x`
`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_0^9 1/(1 + sqrtx)` dx = ______
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
Evaluate: `int_0^π x/(1 + sinx)dx`.
For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x dx` is ______.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
`int_-9^9 x^3/(4-x^2) dx` =______
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate:
`int_0^1 |2x + 1|dx`
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2)dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate:
`int_0^6 |x + 3|dx`
Evaluate:
`int_0^sqrt(2)[x^2]dx`