English

Evaluate: π∫0πx1+sinxdx. - Mathematics

Advertisements
Advertisements

Question

Evaluate: `int_0^π x/(1 + sinx)dx`.

Sum

Solution

`int_0^π x/(1 + sinx)dx`

Let I = `int_0^π x/(1 + sinx)dx`  ...(i)

On using property

`int_0^a f(x)dx = int_0^a f(a - x)dx`

∴ I = `int_0^π (π - x)/(1 + sin(π - x))dx`

I = `int_0^π (π - x)/(1 + sinx)dx`  ...(ii)

Adding equations (i) and (ii), we get

2I = `int_0^π π/(1 + sinx)dx`

= `πint_0^π 1/(1 + sinx) xx (1 - sinx)/(1 - sinx)dx`  ...[Multiplying and dividing by (1 – sin x)]

= `πint_0^π (1 - sinx)/(1 - sin^2x)dx = πint_0^π (1 - sinx)/(cos^2x)dx`

= `π[int_0^π 1/(cos^2x)dx - int_0^π sinx/(cos^2x)dx]`

= `π[int_0^π sec^2x  dx - int_0^π secx tanx  dx]`

= `π[[tanx]_0^π - [secx]_0^π]`

= π[0 – (– 1 – 1)]

= 2π

∴ I = `(2π)/2` = π.

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Delhi Set 2

RELATED QUESTIONS

 
 

Evaluate `int_(-2)^2x^2/(1+5^x)dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) cos^2 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^a  sqrtx/(sqrtx + sqrt(a-x))   dx`


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


Evaluate`int (1)/(x(3+log x))dx` 


`int_0^1 "e"^(2x) "d"x` = ______


Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x`


`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______ 


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______


`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______ 


Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


Evaluate the following:

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`


Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`


`int_a^b f(x)dx` = ______.


`int_4^9 1/sqrt(x)dx` = ______.


Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.


Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.


If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.


Evaluate `int_-1^1 |x^4 - x|dx`.


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following definite integral:

`int_-2^3(1)/(x + 5)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×