English

Evaluate Int0Π2Cos2x1+SinxCosxDx - Mathematics

Advertisements
Advertisements

Question

Evaluate 0π2cos2x1+sinxcosxdx

Solution

I=0π2cos2x1+sinxcosxdx   ....(1)

Using 0af(x)dx=0af(a-x)dx

I =0π2cos2(π2-x)1+sin(π2-x)cos(π2-x)dx

=0π2sin2x1+cosx.sinxdx  .....(2)

Adding eq. (1) & (2)

2I=0π2cos2x+sin2x1+sinxcosxdx

=0π211+sinxcosxdx`

=0π2sec2xsec2x+tanxdx

2I=0π2sec2xdx1+tan2x+tanx

Put tanx=t,sec2xdx=dt

when x = 0, t = 0

when s=π2,t=

2I=0dtt2+2t.12+1414+1

=0 dt(t+12)2+(32)2

=132[tan-1(t+1232)]0

=23tan-1[2t+13]0

2I=23[π2-π6]

I=13[3π-π6]

=13[2π6]=π33

shaalaa.com
  Is there an error in this question or solution?
2017-2018 (March) Set 1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.